收藏 分享(赏)

山东省栖霞二中2019届高三上学期10月月考数学(理)试卷.doc

上传人:HR专家 文档编号:5832996 上传时间:2019-03-19 格式:DOC 页数:9 大小:533KB
下载 相关 举报
山东省栖霞二中2019届高三上学期10月月考数学(理)试卷.doc_第1页
第1页 / 共9页
山东省栖霞二中2019届高三上学期10月月考数学(理)试卷.doc_第2页
第2页 / 共9页
山东省栖霞二中2019届高三上学期10月月考数学(理)试卷.doc_第3页
第3页 / 共9页
山东省栖霞二中2019届高三上学期10月月考数学(理)试卷.doc_第4页
第4页 / 共9页
山东省栖霞二中2019届高三上学期10月月考数学(理)试卷.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、2018-2019 学年栖霞二中高三理科数学 10 月月考试题一、选择题(本大题 10 小题,每小题 5 分,共 50 分)1.设集合 ,集合 ,则 ( )ln1Axyx2ByxABA. B. C. D.0,10,1,12.函数 的零点个数为( )2logfxxA.0 B.1 C.2 D.33.已知定义域为 R 的函数 在 为增函数,且函数 为偶函fx2,2yfx数,则下列结论不成立的是( )A. B. C. D. 0(1)ff0ff13f1f4.设 均为正数,且 ,则( ),abc11222log,log,logbcaA. B. C. D.cbabac5.函数 对任意 都有 ,若当 时,fx

2、R3fxfx35,2,则 ( )12f018fA. B. C. D.44446. 已知函数 当 时, ,则 的12, log3xafx12x120fxfa取值范围是( )A. B. C. D. 10,31,32102( , ) 1,437.已知 是常数,函数 的导函数 的图象a321fxaxyfx如图所示,则函数 的图象可能是( )2xga8.若函数 的定义域为 ,值域为 ,则 的取值范围为( 234yx0,m7,4m)A. B. C. D.0,4,423,23,29.已知函数 若 ,则实数 等于( )21,xfa04faA. B. C. D.12452910.设函数 在 上存在导数 ,对任意

3、 有 ,且fxRfxxR2fxfx在 上, .若 ,则实数 的取值范围为( 0,aa)A. B. C. D. 1,1,22,二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)11.设 则 的值为 .21,1xf21fxd12. 已知函数 f(x)|2 x1| a,若存在实数 x1,x 2(x1x 2),使得 f(x1)f (x2)1,则 a 的取值范围是 .13. 已知函数 f(x)是定义在 R 上的周期为 2 的奇函数,当 0x 1 时,f (x)4 x,则f f(1)_.( 52)14. 若函数 f(x)x 2e xax 在 R 上存在单调递增区间,则实数 a 的取值范围是_三

4、、解答题(本大题共 4 小题,共 50 分,解答应写出文字说明、证明过程或演算步骤)15.(12 分)设命题 :函数 的定义域为 ;命题 :p2lg16afxxRq不等式 对一切 均成立.39xaR(1)如果 是真命题,求实数 的取值范围;a(2)如果命题 为真命题, 为假命题,求实数 的取值范围.“pq“pqa16. (12 分)设 ,其中 为正实数.21xefa(1)当 时,求 的极值点;43afx(2)若 为 上的单调函数,求 的取值范围。fxRa17. (13 分)定义在 上的函数 对任意 都有Rfx,abR( 为常数).fabffbk(1)判断 为何值时, 为奇函数,并证明;kx(2

5、)在( 1)的条件下,设集合 2,610,Axyfxfy,且 ,求实数 的取值范围.,BxyaBa(3)设 , 是 上的增函数,且 ,解不等式kfxR45f.243fm18. (13 分)已知 .2 2ln,fxaxegxe(1)若 ,判断是否存在 ,使得 ,并说明理由;1a00f(2)设 ,是否存在实数 ,当 ,hxfgxa,xe( 为自然常数)时,函数 的最小值为 3,并说明理由78e h高三理科数学第一次月考试题参考答案1-5 B C C A B 6-10 A D C C B11.42312. (1,2) 13. -2 14. (,2ln 22)15.解:(1 )命题 p是真命题,则不等

6、式2016ax在 R上恒成立;当 0a时,由 0x,可得 x,可得 ,此时定义域不是 ,不合题意;1 分若使定义域为 R,需满足2,104a则 a;因此 的取值范围为 2a.5 分(2 )命题 q是真命题,不等式 39x对一切 xR均成立,设 39xy,令30xt,则2,0yt,当12t时, ma11,.24ya9 分由已知条件:命题 “pq为真命题, “pq为假命题,则 ,pq一真一假.p真 q假,则 2,a且14,则得 a不存在;10 分若 假 真,则.11 分综上,实数 a的取值范围124a.12 分16.解析:对 fx求导,得2 .1xaxfe(1 )当43a时,若 0,f则24830

7、,x解得 12,x,2 分结合,可知x1,213,23,2f+ 0 - 0 +x 极大值 极小值 4 分所以 132x是极小值点, 21x是极大值点. 6 分(2 )若 f为 R上的单调函数,则 fx在 R上不变号,8 分结合与条件 0a,知 210xa在 上恒成立,即 24,10 分由此并结合 ,知 .所以 a的取值范围为 01a.12 分17.解析:(1 )当 k时, fx为奇函数,证明:当 0b时, 0f,所以 0f2 分所以 ffxf是奇函数. 4 分(2 ) 2,610Axyfxfy2 26161f xy6 分xy 8 a8 分(3 ) ,45223kfffff10 分2334fmm

8、x是增函数 2 1或 2m.13 分18.解:(1 )不存在 0,使得 0fx.理由如下:当 1a时, 2ln,0,fxxe212.fx2 分,f随 的变化情况如下表:x0,11 1,f- 0 +x 极小值 f当 1时,函数 fx有极小值 1fxe极 小 值 ,此极小值也是最小值,故不存在 0,使得 0fx.5 分(2 )因为 2 2ln,fxaxege,所以 lh.则1xa,假设存在实数 a,使 ln0,hxe有最小值 3,(i)当 0a时, ,所以 hx在 0,e上单调递减, 7 分min 413,hxea不符合题意.(ii)当 0a时,当1e时,,0hx在 ,e上恒成立,所以 hx在 0,上单调递减,min413,eae不符合题意. 9 分当1ae时,0,ea当1xa时,,hx在,上单调递减;当xe时,0,在1,ea上单调递增,所以minln3,hx解得21.ae12 分综上所述,存在 2ae,使 0,x时, hx有最小值 3. 13 分

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报