1、第八章 薄膜太陽能電池,授課教師:黃俊傑,薄膜太陽能電池的種類,非晶矽(Amorphus Silicon, a-Si) 微晶矽(Nanocrystalline Silicon,nc-Si,or Microcrystalline Silicon,uc-Si) CIS/CIGS(銅銦硒化物) CdTe(碲化鎘) GaAs Multijuction(多接面砷化鎵) 色素敏化染料(Dye-Sensitized Solar Cell) 有機導電高分子(Organic/polymer solar cells),太陽能電池市場現況,太陽能電池效演進,非晶矽(Amorphus Silicon, a-Si),資
2、料來源:BP 2002、World Nuclear Association,是發展最完整的薄膜式太陽能電池。其結構通常為p-i-n(或n-i-p)偶及型式,p層跟n層主要座為建立內部電場,I層則由非晶系矽構成。非晶矽的優點在於對於可見光譜的吸光能力很強,而且利用濺鍍或是化學氣相沉積方式生成薄膜的生產方式成熟且成本低廉,材料成本相對於其他化合物半導體材料也便宜許多;不過缺點則有轉換效率低(約57%),以及會產生嚴重的光劣化現象的問題,因此無法打入太陽能發電市場,而多應用於小功率的消費性電子產品市場。不過在新一代的非晶矽多接面太陽能電池(MultijuctionCell)已經能夠大幅改善純非晶矽太
3、陽電池的缺點,轉換效率可提升到68%,使用壽命也獲得提昇。未在具有成本低廉的優勢之下,仍將是未薄膜太陽能電池的主流之一。,微晶矽(nc-Si,uc-Si),微晶矽其實是非晶矽的改良材料,其結構介於非晶矽和晶體矽之間,主要是在非晶體結構中具有微小的晶體粒子,因此同時具有非晶矽容易薄膜化,製程便宜的特性,以及晶體矽吸收光譜廣,且不易出現光劣化效應的優點,轉換效率也較高。目前已有將a-Si和nc-Si疊層後製成的薄膜太陽能電池商品(由日本Sanyo研發成功),可鍍膜在一般窗戶玻璃上,透光的同時仍可發電,因此業界廣泛看好將是未非晶矽材料薄膜太陽電池的的發展主流。,CIS/CIGS(銅銦硒化物),CIS
4、(CopperIndiumDiselenide)或是CIGS(CopperIndiumGalliumDiselenide)都屬於化合物半導體。這兩種材料的吸光(光譜)範圍很廣,而且穩定性也相當好。轉換效率方面,若是利用聚光裝置的輔助,目前轉換效率已經可達30%,標準環境測試下最高也已經可達到19.5%,足以媲美單晶矽太陽電池的最佳轉換效率。在大面積製程上,採用軟性塑膠基板的最佳轉換效率也已經達到14.1%。由於穩定性和轉換效率都已經相當優異,因此被視為是未最有發展潛力的薄膜太陽能電池種類之一。,CdTe(碲化鎘),CdTe同樣屬於化合物半導體,電池轉換效率也不差:若使用耐高溫(600C)的硼玻
5、璃作為基板轉換效率可達16%,而使用不耐高溫但是成本較低的鈉玻璃做基板也可達到12%的轉換效率,轉換效率遠優於非晶矽材料。此外,CdTe是二元化合物,在薄膜製程上遠較CIS或CIGS容易控制,再加上可應用多種快速成膜技術(如蒸鍍法),模組化生產容易,因此容易應用於大面積建材,目前已經有商業化產品在市場行銷,轉換效率約11%。不過,雖然CdTe技術有以上優點,但是因為鎘已經是各國管制的高污染性重金屬,因此此種材料技術未發展前景仍有陰影存在。,GaAs Multijuction(多接面砷化鎵),在單晶矽基板上以化學氣相沉積法成長GaAs薄膜所製成的薄膜太陽能電池,因為具有30%以上的高轉換效率,很
6、早就被應用於人造衛星的太陽能電池板。新一代的GaAs多接面(將多層不同材料疊層)太陽能電池,如GaAs、Ge和GaInP2三接面電池,可吸收光譜範圍極廣,轉換效率目前已可高達39%,是轉換效率最高的太陽能電池種類,而且性質穩定,壽命也相當長。不過此種太陽能電池的價格也極為昂貴,平均每瓦價格可高出多晶矽太陽能電池百倍以上,因此除了太空等特殊用途之外,預期並不會成為商業生產的主流。,染料敏化染料(Dye-Sensitized Solar Cell),染料敏化感染料電池是太陽能電池中相當新穎的技術,產品是由透明導電基板、二氧化鈦(TiO2)奈米微粒薄膜、染料(光敏化劑)、電解質和ITO電極所組成。此
7、種太陽能電池的優點在於二氧化鈦和染料的材料成本都相對便宜,又可以利用印刷的方法大量製造,基板材料也可更多元化。不過目前主要缺點一是在於轉換效率仍然相當低(平均約在78%,實驗室產品可達10%),且在UV照射和高熱下會出現嚴重的光劣化現象,二是在於封裝過程較為困難(主要是因為其中的電解質的影響),因此目前仍然是以實驗室產品為主。然而,基於其低廉成本以及廣泛應用層面的吸引力,多家實驗機構仍然在積極進行技術的突破。,有機導電高分子(Organic/polymer solar cells),有機導電高分子太陽能電池是直接利用有機高分子半導體薄膜(通常厚約為100nm)作為感光和發電材料。此種技術共有兩
8、大優點,一在於薄膜製程容易(可用噴墨、浸泡塗佈等方式),而且可利用化學合成技術改變分子結構,以提昇效率,另一優點是採用軟性塑膠作為基板材料,因此質輕,且具有高的可撓性。目前市面上已經有多家公司推出產品,應用在可攜式電子產品如NB、PDA的戶外充電上面,市場領導者則是美國Konarka公司。不過,由於轉換效率過低(約45%)的最大缺點,因此此種太陽能電池的未發展市場應該是結合電子產品的整合性應用,而非大規模的太陽能發電。,非晶矽薄膜太陽電池構造,Thin film Si:H advantages,Abundantly available raw materials Low Si and ener
9、gy consumption Flexible, Roll-to-Roll Large area, low temperature ( 250 C) fabrication Tuneable band gap High absorption “Light trapping” arrangement with rough interfaces and dielectric mirrors,Need of raw material,Thin-film solar cells,非晶矽薄膜太陽電池製造程,非晶矽薄膜太陽電池製造程(玻璃基材),非晶矽薄膜太陽電池製造程 (玻璃基材),Thin film
10、Si:H challenges,Increasing deposition rate (from 0.1 nm/s to 10 nm/s!), including compatible doped layers Enhance the Isc (absorption, light trapping) Improving stabilized device performance Understanding fundamental physics: low Voc, shunt behavior, light-induced defect creation,非晶矽薄膜太陽電池“Amorphous
11、 Si:H Thin-film Solar Cell”UniSolar and,薄膜太陽能電池 CIGS薄膜電池,此型有種:一種含銅銦硒三元素(簡稱CISe),一種含銅銦鎵硒四元素(簡稱CIGS)。由於其高光電效及低材成本,被許多人看好。在實驗室完成的CIGS光電池,光電效最高可達約19.88,就模組而言,最高亦可達約13(CISe 約10%)。CIGS隨著銦鎵含的同,其光吸收範圍可從1.02ev至1.68ev,此項特徵可加以用於多層堆疊模組,已近一步提升電池組織效能。此外由於高吸光效(104105-1),所需光電材厚需超過1m,99以上的光子均可被吸收,因此一般粗估產製造時,所需半導體原物可
12、能僅只US$0.03/W。,薄膜太陽能電池 CIGS薄膜電池,Chalcopyrite 半導體的性質,CIGS太陽能電池元件結構演進,CIGS太陽能電池元件製作程,CIGS 薄膜太陽電池製造方法,CIGS太陽能電池-真空製程,真空塗佈製程- Co-evaporation,真空塗佈製程- Sputtering,CIGS太陽能電池-非真空製程,非真空塗佈製程- electrodeposition,非真空塗佈製程-Metal Oxide Ink,CIS薄膜太陽電池“Copper Indium Diselenide Thin-film Solar Cell ”,245-kW rooftop, thin
13、-film CIS-based solar electric array, Camarillo, California (Shell Solar Industries. ),85-kW thin-film CIS-based BIPV facade, North Wales, UK,結論,各型太陽能電池的市場需求將與日遽增,且各技術皆以低成本和提高光電轉換效為研究方向。其中又以薄膜太陽能電池為現階段最具有取代矽晶太陽能電池的可能。薄膜太陽電池中,CIGS是目前具有最高效的電池之一。 現階段CIGS電池主要產技術仍以真空製程技術為主,但難以克服大面積及低成本的問題。CIGS非真空製程技術雖具有低
14、成本以及提高材使用的優點,但各方式具有難以克服的關鍵問題皆仍待解決。如CIGS晶成長等。結,瓶頸,CIGS薄膜太陽能電池雖具有高效、低成本、大面積與可撓性等潛優勢,但還有許多需要克服的問題接踵而: 製程複雜、技術選擇百家爭鳴,且供應相當分歧,各站並無制式化設備放大製程之均質性佳,變化大 dopant ratio thin window layer Low Voc resulting in increased area loss 系統化的研究與實驗據十分缺乏許多關鍵點無定,如:組成成分、結構、晶界、各層間之介面等 關鍵原的缺乏 銦元素也是一項潛在隱憂,銦的天然蘊藏相當有限,國外曾計算,如以效10
15、的電池計算,人如全面使用CIGS光電池發電供應能源,可能只有光景可,銦的天然蘊藏相當有限,國外曾計算,如以效10的電池計算,人如全面使用CIGS光電池發電供應能源,可能只有光景,地熱,CdTe Film Deposition,CdTe Film Deposition,CdTe Film Deposition,Rooftop CdTe薄膜太陽電池“Cadmium TellurideThin-film Solar Cell”,Katzenbach Juwi Memmingen SAG,SAGFirst Solar -CdTe Rooftop,C-Si Technology in Historic
16、Perspective,全球PV 前十大廠商,台灣太陽光電產業鏈分佈概況,太陽光電產值預期達成規模,光電高分子太陽能電池,特徵 發展不久 原理: 利用不同氧化還原型聚合物的不同氧化還原位勢,在導電材料(電極)表面進行多層複合,外層聚合物的還原電為較高,電子轉移方向只能由內層向外層轉移;另一電極正好相反,奈米晶色素增感solar cell,DSSC進展,Why organic solar cell?,Ease of fabrication for large area from solution Transparent Conformal and flexible Low cost of man
17、ufacturing,Dye-Sensitized Solar Cell,Mechanisms of the DSSC,h : photon absorption a : electron injection b : recombination c : e- transport and collection at conducting substrate d : I- oxidation e : I3- reduction f : ion transport,Basic mechanisms in a DSSC,I/I3- redox electrolyte,dye,h,TiO2,TCO,Co
18、unter electrode,a,b,c,d,e,f,2e- + I33I-,3I-I3 - + 2e-,E,-An Introduction to its Principle, Materials, Processes, and Recent R&Ds,Dye-sensitized Solar Cell(DSSC):,Principle of Dye-Sensitized Solar cells,Dye-Sensitized Solar Cell,Low photocurrent could be the result of Inefficient light harvesting by
19、the dye Inefficient charge injection into TiO2 Inefficient collection of injection electron,Gratzel, Nature, 2001,Special Features of a DSSC,Semiconductor not excited directly Photo carrier generation & transportation are well separated the probability of recombination can be drastically reduced. Po
20、sitive charge transport via ion transport in the electrolyte, rather than hole condition No electric field, electron transfer has been described as diffusion Jn= n n Ecb + q DnnNanoparticle structure,TCO,Counterelectrode,TiO2 / dye / electrolyte(I-/I3-),glass,e-,0,Performance of Photovoltaic and Dye
21、-sensitized Solar Cells,-Their functions, principles, characteristics, materials, processes, and recent R&Ds,Part II: Major Components in a DSSC,The TCO Electrode -one of the major components in a DSSC,Role of the TCO electrode in a DSSC Electrons transportation and collectionCharacteristics High tr
22、ansmittance in visible region () High electrical conductivity () Thermal endurance () Corrosion resistance Energy level not higher than nanoparticle oxide,() present the issue still for improving,e-,I,T,R,Common Materials and Processes of the TCO Electrodes,Materials: ITO, ZnS, ZnO, SnO2 (energy gap
23、 higher than photo energy in visible region)Processes: Sputtering deposition Plasma ion assisted deposition,Ref (3),Recent R&Ds of TCO Electrode in DSSC,Incident = Reflection + Transmittance + Absorption,Passage of Light Through a Material,related to refractive index, thickness, particle size,Depend
24、 on Eg,Particle size effect,Interference effect,Nano-material transmit light,Micro-material scatter light,Ref (14),Ref (13),dye,dye -one of the major components in a DSSC,Role of dye in a DSSC Photoexciting & injecting electrons into the conduction band of the oxide Characteristics Absorb all light
25、below 900nm () Molecular dispersion in nanostructure oxide () Carry attachment group(eg. carboxylate or phosphonate) to firmly graft to the oxide surface The Energy level of excited state higher than conduction band of oxide The redox potential sufficient high to be regenerated via electron from the
26、 electrolyte Sustain high cycle usage,TiO2,Ru2+ Ru2+* Ru3+e-,e-,h,Common Materials of the Dye,General structure: ML2X2 ( L: 2.2-ipyridyl-4,4-dicarboxylic; M: Ru or Os; X: halide,-CN,-SCN ),N3,Absorption Spectrum of N3 and dark gray,Dark gray,AM1.5 solar spectrum,400,500,600,700,800,900,nm,A,0,0.5,1.
27、0,1.5,2.0,N3,Dark gray,Ref (14),Recent R&Ds of Dye in DSSC,Oxide Film -one of the major components in a DSSC,Role of the oxide in a DSSC Receive electrons from the dye Efficient transport electrons in the mediaCharacteristics Ultra fine structure(nm-crystal, mesoporous) interconnected () Good electr
28、ical conduction properties () Conduction band edge is more negative than HUMO of the dye,ultra fine structure enable.,TiO2 nanoparticles,Ref (17),Ref (3),IPCE%,0,0,100,0.15,300,800nm,300,800nm,Single crystal anatase,Nanocrystal anatase,Common Materials and Processes of the Oxide film,Material: TiO2(
29、cheap, non-toxic), ZnO, Fe2O3, Nb2O5, WO3, Ta2O5, CdS, CdSe Common processes:,TiO2 film,TiO2 particles (Finely divided monodispersed colloidal),Coating, sintering,Ti sault,Process parameters: Precursor chemistry Hydrothermal growth Temp Binder addition Sintering condition,Control: hydrolysis and con
30、densation kinetics,Factors influence properties: Material content Chemical composition Structure Surface morphology Grain size, porositypore size distribution Crystalline form (anatase,rutile),Hydrolysissolvent +binder,(1-20m),Electron Transport in the DSSC - An important factor affecting IPCE,De in
31、 the porous film De in the bulk crystal Multi-trapping model: electron transport is mediated by the conduction band and is interrupted by trapping. The traps could be formed by oxygen defects, amorphous layer on the particle surface, chemical surrounding, and lattice mismatch at boundaries. Injectio
32、n electrons are slow down by trapping at the surface of the particle and may back reaction through combination with I3- iron.,Ref (18),Recent R&Ds of the Oxide Film in DSSC,Band positions of semiconductors,The Electrolyte -one of the major components in a DSSC,Role of electrolyte in a DSSC Restore t
33、he original state of the dye by electron donation from the electrolyte Characteristics Oxidation Reduction Highly reusable Redox potential lower than dye,oxide,dye,electrolyte,e-,e-,e-,I-,I3-,I3-,I-,Recent R&Ds of the Redox Mediator in DSSC,TiO2,Hole transport material,Conclusion,For improving conve
34、rsion efficiency Increase the transmittance of TCO Increase the light harvesting of dye(LHE) Improve the electron injecting into oxide (in ) Improve the collection of injection elections in TCO (c) Reduce the recombination of e- hDurability & process concern Thermal stability of components Corrosion resistance,IPCE = LHE in cLHE: light harvesting efficiency ; in: charge injection efficiency; c: charge collection efficiency,Ref (27),