收藏 分享(赏)

有源滤波器中的相位关系.doc

上传人:weiwoduzun 文档编号:5681547 上传时间:2019-03-12 格式:DOC 页数:12 大小:301.50KB
下载 相关 举报
有源滤波器中的相位关系.doc_第1页
第1页 / 共12页
有源滤波器中的相位关系.doc_第2页
第2页 / 共12页
有源滤波器中的相位关系.doc_第3页
第3页 / 共12页
有源滤波器中的相位关系.doc_第4页
第4页 / 共12页
有源滤波器中的相位关系.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、在使用滤波器的应用中,通常人们对幅值响应的兴趣要比对相位响应的兴趣更浓厚。但是,在某些应用中,滤波器的相位响应也很重要。一个实例是滤波器用于过程控制环路中的情形。这里,人们关心的是总的相移量,因为它影响到环路的稳定性。用来搭建滤波器的拓扑结构是否会造成在某些频率点处符号出现相反,是非常重要的。将有源滤波器视为两个级联的滤波器是一个有用的方法。如图 1 所示,其中一个滤波器是理想的滤波器,用于体现传递函数;另一个是构成滤波器的放大器。在闭环的负反馈环路中所采用的放大器可以被视为一个具有一阶响应的、简单的低通滤波器。当频率超过某一点后,增益将随着频率的增长而出现滚降现象。此外,如果放大器使用反相放

2、大结构的话,则所有频率点上还将出现附加的 180相移。图 1. 以两个级联的传递函数的形式表示的滤波器滤波器设计过程可分为两步。首先选定滤波器的响应特性,接下来选出适当的电路结构来实现它。滤波器的响应是指衰减曲线的形状,这常常可以归为经典的响应特性中的一种,如 Butterworth、Bessel 或者某种 Chebyshev 型。虽然这些响应特性的选择往往会影响幅值响应特性,但它们也会影响相位响应特性的形状。在本文中,为了进行比较,忽略幅值响应,认为其几乎不变。滤波器的复杂性往往通过滤波器的“阶数” 来定义,该参数与储能元件(电感和电容)的数量有关。滤波器传递函数分母的阶数定义了随着频率的上

3、升而呈现的衰减速率。渐近线型的滤波器滚降速率为6ndB/倍频程,或者20ndB/十倍频程,其中 n 是极点的数量。倍频程是指频率的二倍或者一半,十倍频程是频率的十倍增长或者缩减。因此,一个一阶(或者单极点)滤波器的滚降速率为6dB/倍频程或者20dB/十倍频程。类似的,一个二阶(或者 2 极点)滤波器的滚降速率为12dB/倍频程或者40dB/十倍频程。更高阶次的滤波器往往是由级联的一阶和二阶基本单元所构成的。自然,我们可以利用单个有源放大电路级来构建三阶、甚至四阶滤波器,但是对于元件值的敏感,以及元件之间的相互作用对频率响应所造成影响的大幅度上升,会使这些选择不那么具有吸引力。传递函数首先,我

4、们考察一下传递函数的相位响应。对于同样阶数的滤波器选项来说,它们的传递函数的相移特性都相同。对于单极点、低通的情形,传递函数的相移为 ,由下式给出。( 1)式中: = 频率(弧度/秒)0 = 中心频率(弧度/秒)以弧度/秒为单位的频率等于 2乘以以 Hz 为单位的频率,这是因为每个 360周期对应着2弧度。由于上面的表达式是一个无量纲的比值,故 f 和 都可以采用。中心频率还可以被称为截止频率(即该单极点、低通滤波器的幅值响应特性下降 3dB约 30 的频率点)。在相位关系方面,中心频率是相移量达到其最终值90(在这个例子中)的 50时的频率点。图 2 是一幅半对数图,描述了公式 1 所表述的

5、相位响应关系,其频率范围是中心频率以下的两个十倍频程至中心频率以上的两个十倍频程。中心频率(1)处的相位移动为 45。图 2. 一个单极点、低通滤波器在中心频率附近的相位响应(同相,左轴;反相响应,右轴) 图中:Normalized Frequency归一化频率,Phase Angle(inphase) 相角(同相),Phase Angle(inverted ) 相角(反相)类似的,一个单极点的高通滤波器可以由下式给出:(2)图 3 描绘了公式 2 所表示的、在中心频率以下两个十倍频程至中心频率以上两个十倍频程这一范围内的响应特性。其归一化的中心频率(1)处的相移为+45。显然,高通和低通特性

6、类似,只是相互间存在 90的相位差(/2 radians)图 3. 一个单极点、低通滤波器在中心频率 1 附近的相位响应(同相,左轴;反相响应,右轴) 图中:Normalized Frequency归一化频率,Phase Angle(inphase) 相角(同相),Phase Angle(inverted ) 相角(反相)对于二阶、低通的情形,传递函数的相移可以由下式近似表示为(3)式中 是滤波器的阻尼比。它将决定幅值响应曲线上的峰值以及相位曲线过渡段的陡峭程度。它是电路的 Q 值的倒数,这也决定了幅值滚降或相位偏移的陡峭程度。 Butterworth响应的 为 1.414(Q0.707),可

7、以产生最大平坦度响应特性。更低的 会使幅值响应特性曲线上出现尖峰。图 4. 一个双极点、低通滤波器的中心频率 1 附近的相位响应(同相,左轴;反相响应,右轴) 图中:Normalized Frequency归一化频率,Phase Angle(inphase) 相角(同相),Phase Angle(inverted ) 相角(反相)图 4 描绘了该式所表示的(1.414)、在中心频率以下两个十倍频程至中心频率以上两个十倍频程这一范围内的响应特性。这里,中心频率(1)处出现的相位偏移为90。一个 2 极点、高通滤波器的相位特性响应可以由下式近似表示(4)图 5 描绘了该式所表示的响应特性(同样有

8、1.414),其范围是中心频率(1 )以下两个十倍频程至中心频率以上两个十倍频程,相应的相移为图 5. 一个双极点、高通滤波器的中心频率 1 附近的相位响应(同相,左轴;反相响应,右轴) 图中:Normalized Frequency归一化频率,Phase Angle(inphase) 相角(同相),Phase Angle(inverted ) 相角(反相)同样的,显然高通和低通相位响应是类似的,仅仅存在 180的相位偏移( 弧度)。在更 高阶数的滤波器中,每个附加段的相位响应都累加到总的相移量之上。这一特性将在下面进一步予以讨论。为了与通常的实践保持一致,所示出的相移被限制为180的范围之内

9、。例如,181 事实上等价于 +179,360等价于 0,依此类推。一阶滤波器段一阶滤波器段可以以多种方式来构建。图 6 示出最简单的一种结构,即使用无源的 RC架构。该滤波器的中心频率为 1/(2RC)。它之后往往接一个同相的缓冲放大器,以防止滤波器之后的电路对其产生负载效应,负载会改变滤波器的响应特性。此外,缓冲器还可以提供一定的驱动能力。相位响应如图 2 所示,即在中心频率点处产生 45的相移,正如传递函数所预测的那样,这是因为没有另外的元件改变相移特性。这种响应特性将被称为同相、一阶、低通响应特性。只要缓冲器的带宽显著高于滤波器,那么缓冲器就不会带来相移。图 6. 无源低通滤波器请记住

10、,这些图中的频率值是归一化的,即相对于中心频率的比值。例如,若中心频率是5kHz,则这些图将展示 50Hz 到 500kHz 范围内的相位响应特性。图 7 示出另外一种结构。该电路增加了一个并联电阻,对积分电容进行连续放电,从根本上来说它是一个有损耗的积分器。其中心频率同样是 1/(2RC)。因为该放大器是以反相模式工作的,故反相模式将在相移特性上引入附加的 180相位。图 2 示出了输入输出的相位差随频率的变化,其中包括了放大器引入的反相(右轴)。该响应特性将被称为反相的、一阶、低通响应。图 7. 利用工作在反相模式的运放搭建的有源、单极点、低通滤波器上面所示的电路可以衰减高频分量而通过低频

11、分量,均属于低通滤波器。可以通过高频分量的电路则与之类似。图 8 示出一个无源的一阶、高通滤波器电路结构,其相位随着归一化频率的变化特性则示于图 3 中(同相响应)。图 8. 无源高通滤波器图 3(左轴)的曲线被称为同相、一阶、高通响应特性。该高通滤波器的有源电路示于图9 中。其相位随频率的变化示于图 3 中(右轴)。这将被称为反相、一阶、高通响应。图 9. 有源、单极点、高通滤波器二阶滤波器段二阶滤波器有各式各样的电路结构。这里要讨论的是 SallenKey、多路反馈、状态变量结构,及其类似的双二阶滤波结构。它们是最常见的结构,而且与本文的内容相关。关于各种不同结构的更为完整的信息可参见文后

12、的参考文献。SallenKey 低通滤波器广 泛使用的 Sallen-Key 结构也被称为电压控制电压源(VCVS )型,是 MIT 的林肯实验室(参见文献 3)的 R.P. Sallen 和 E.L. Key 于 1955 年提出的结构。图 10 示出了一个SallenKey 二阶低通滤波器的电路原理图。这一结构受到广泛欢迎的一个原因是它的性能基本与运放的性能无关,因为放大器主要作为一个缓冲器来使用。由于在基本的SallenKey 电路中,连接成跟随器的运放并不用于产生电压增益,故对它的增益带宽要求并不重要。这意味着,对于给定的运放带宽而言,与运放的动态特性受到可变反馈环路特性影响的那些电路

13、结构相比,利用这一固定的(单位)增益可以设计出频率更高的滤波器。通过滤波器后,信号的相位保持不变(同相结构)。图 4 示出一个 Q0.707(或者,阻尼比 1/Q=1.414 Butterworth 响应特性)的 SallenKey 低通滤波器的相移频率关系图。为了简化比较,这将作为下面所考虑的二阶滤波器段的性能标准。图 10. 2 极点、Sallen-Key 低通滤波器Sallen-Key 高通滤波器通过互换决定频率网络上的电容和电阻的位置,可将 Sallan-Key 低通电路变换为高通结构,正如图 11 所示的那样,而且同样采用单位增益的缓冲器。其相移频率关系示于图 5 中(左轴)。这是同

14、相、二阶、高通响应。图 11. 2 极点、Sallen-Key 高通滤波器SallenKey 滤波器的放大器增益可以通过在运放反相输入上连接一个电阻衰减器组成的反馈网络来提高。不过,改变增益将影响到决定频率网络的表达式,而且需要重新计算元件的值。该放大器的动态特性也需要更严格的考察,因为它们在环路中引入了增益。多路反馈(Multiple-Feedback ,MFB)低通滤波器多 路反馈滤波器是一种单放大器电路结构,反馈环路是基于运放的积分器(反相配置),如图 12 所示。因此,运放参数对传递函数之间的影响要大于 SallenKey 的实现方案。要产生一个高 Q、高频电路是很困难的,因为运放在高

15、频段的开环增益有限。一条指导方针是,运放的开环增益应该至少比谐振(或者截止)频率处的幅值响应高出 20dB(即 10倍于之),包括滤波器的 Q 值造成的峰值。由于 Q 值而造成的尖峰将具有如下的幅值(5)式中:H 是电路的增益。图 12. 2 极点、多路反馈(MFB)、低通滤波器该多路反馈滤波器会使信号反相。这等价于让滤波器自身的相移增加了 180。图 4 示出了相位频率变化关系(右轴)。这将被称为反相、二阶、低通响应。值得注意的是,在得到给定响应特性的条件下,多路反馈结构中的最大和最小元件值之间的差异要大于SallenKey 实现方案中的。多路反馈(MFB)、高通滤波器上面关于多路反馈、低通

16、滤波器的评述也适用于高通的情形。图 13 示出一个多路反馈、高通滤波器的原理图,其理想的相移-滤波特性则示于图 5 中(右轴)。这被称为反相、二阶、高通响应特性。图 13. 2 极点、多路反馈(MFB)高通滤波器要保证这种滤波器的具体电路实现在高频情况下的稳定性是十分困难的,因为它是在一个微分器的基础上构建的,与所有的微分器电路所类似的是,它在更高的频率上闭环增益更大,因此会对噪声产生放大作用。状态变量型滤波器图 14 示出了一种状态变量实现方案。该结构是最灵活和最精确的实现方案,付出的代价是电路元件的数量大大增加,其中包括了 3 个运放。所有 3 个主要的参数(增益、Q 和0)都可以独立调节

17、,而且可以同时提供低通、高通和带通输出。该滤波器的增益也是独立的变量。由于状态变量滤波器的所有参数都可以独立调节,故其元件值的散布变得很小。而且由于温度和元件公差所带来的失配也可以最小化。与上面的多路反馈电路类似的是,积分器部分所使用的运放的增益带宽积也成为电路的限制条件。图 14. 2 极点、状态变量滤波器其中低通滤波段的相移频率特性属于一个反相的二阶型响应(参见图 4,右轴),高通段电路将具有反相高通响应(参见图 5,右轴)。双二阶(biquad)状 态变量滤波器的一个近亲是双二阶型(参见图 15)。该电路的名称最早是由 J. Tow 于1968 年使用的(见参考文献 6),后来由 L.C

18、. Thomas 于 1971 年使用(见文献 5),其工作是基于如下的事实:传递函数是两个二阶项之比。该电路与状态变量电路之间存在轻微的区别。在这一结构中,不能提供单独的高通输出。不过它具有两路低通输出,其中一路是同相的(LOWPASS1),另一路是反相的(LOWPASS2)。图 15. 标准的双二阶 2 极点电路由于添加了第四个放大器电路,故可以实现高通、陷波(低通、标准和高通)以及全通型滤波器。图 16 示出一个带有高通电路的双二阶电路的原理图。图 16. 2 极点双二阶滤波器(带有高通段)其中 LOWPASS1 段的相移频率特性属于同相、二阶、低通型响应(参见图 4 的左轴)。LOWP

19、ASS2 段将具有反相的二阶型响应(参见图 4,右轴)。HIGHPASS 段的相移特性属于反相特性(参见图 5,右轴)。结论我们已经看到用于构建一个滤波器的拓扑将影响其实际的相位响应。这会是确定所用的拓扑时需要考虑的一个因素。表 1 对本文中讨论的各种低通滤波器结构的相移范围进行了比较。相移特性随 Q 的变化特性上述的 2 阶响应的 Q 值都是 0.707。图 17 示出了 Q 的变化对低通滤波器的相位响应的影响(对高通滤波器的影响也 类似)。图中绘出了 Q = 0.1,0.5 ,0.707 ,1,2,5,10 和20 时的相位响应曲线。值得注意的是,Q 值较低的情况下,在远低于截止频率的频率

20、上相位就开始发生变化。图 17. 相移随 Q 值的变化特性虽然幅值响应随 Q 值的变化并非本文的主题,但也是一个令人感兴趣的问题。图 18 示出了 Q 值在上述范围内变化时一个 2 阶滤波器的幅值响应特性。当高 Q 电路应用于多级滤波器时,高 Q 电路的响应特性的尖峰现象也是令人感兴趣的问题。虽然在理论上这些电路段以何种顺序来级联并无差异,而在实践中,把 Q 值较低的电路段置于高 Q 电路段之前将更为有利,这是为了让尖峰现象不致于超出滤波器的动态范围。虽然该图是针对低通段的,但高通响应也存在类似的尖峰。图 18. 随着 Q 值的变化,2 极点滤波器的幅值尖峰特性的变化高阶次滤波器传递函数可以级

21、联起来,构成更高阶次的响应特性。当滤波器响应串连起来后,其在任意频率上的 dB 增益(以及衰减)和相角都相加起来。正如我们在前面指出的那样,多极点滤波器一般是利用级联的二阶电路段搭建的,对于奇次阶滤波器,可以另外添加一段一阶电路。两个级联的一阶电路段并不能像单个二阶滤波段那样提供很宽的 Q 值变化范围。图 19 示出一个通过传递函数级联所构成的 4 阶滤波器。这里,我们可以看到,滤波器是由两个二阶段所构成的。图 19. 传递函数的级联所构成的 4 极点滤波器图 20 示出了构建一个 4 阶滤波器的 3 种方式对相位响应的影响。第一种结构是利用两个SallenKey(SK)Butterworth

22、 段搭建的。第二种是利用两个多路反馈(MFB) Butterworth 段搭建的。第三种是利用一个 SK 段和一个 MFB 段搭建的。但是,正如两个级联的一阶电路段并不能构成一个二阶电路段一样,2 个级联的 2 阶 Butterworth 段并不能等效于一个 4 阶 Butterworth 段。第一段 Butterworth 滤波器的 f0 为 1,Q 值为0.5412( 1.8477)。第二段的 f0 为 1,Q 值为 1.3065(0.7654)。正如前面所提到过的那样,SK 段是同相型的,而 MFB 是反相型的。图 20 对这 3 种 4 阶电路的相移特性进行了比较。其中 SK 和 MFB 滤波器具有相同的相位响应特性,因为两个反相段产生了同相响应(111 )。利用混合拓扑结构( SK 和 MFB)构建的滤波器的响应特性将偏移 180 (+1 1 = 1)。图 20. 不同结构的 4 阶电路的相位响应请注意,正如可以预料到的那样,总的相移特性是一个 2 阶电路段的两倍 360 vs. 180。高通滤波器将拥有类似的相位响应,但偏移相差 180。该级联的思想可以用来搭建更高阶次的滤波器,但是,在实践中,超过 8 阶的滤波器很难实现。将来的文章将对带通、陷波(带阻)和全通滤波器的相位关系进行考察

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报