收藏 分享(赏)

地图坐标常识.doc

上传人:gnk289057 文档编号:5603625 上传时间:2019-03-09 格式:DOC 页数:4 大小:49.50KB
下载 相关 举报
地图坐标常识.doc_第1页
第1页 / 共4页
地图坐标常识.doc_第2页
第2页 / 共4页
地图坐标常识.doc_第3页
第3页 / 共4页
地图坐标常识.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、地图坐标常识1、椭球面地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京 54 坐标系、西安 80 坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从 1953 年起采用克拉索夫斯基 (Krassovsky)椭球体建立了我国的北京 54 坐标系, 1978 年采用国际大地测量协会推荐的 IAG 75 地球椭球体建立了我国新的大地坐标系-西安 80 坐标系, 目前 GPS 定位所得出的结果都属于 WGS84 坐标系统,WGS84 基准面采用WGS84 椭球体,它是一地心坐标系,即以地心作为椭球

2、体中心的坐标系。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。 采用的 3 个椭球体参数如下(源自“全球定位系统测量规范 GB/T 18314-2001”): 椭球体 长半轴 短半轴 Krassovsky 6378245 6356863.0188 IAG 75 6378140 6356755.2882 WGS 84 6378137 6356752.3142 理解:椭球面是用来逼近地球的,应该是一个立的椭圆旋转而成的。 2、大地基准面 椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前

3、苏联的 Pulkovo 1942、非洲索马里的 Afgooye基准面都采用了 Krassovsky 椭球体,但它们的大地基准面显然是不同的。在目前的 GIS 商用软件中,大地基准面都通过当地基准面向 WGS84 的转换 7 参数来定义,即三个平移参数 X、Y、Z 表示两坐标原点的平移值;三个旋转参数 x、y、z 表示当地坐标系旋转至与地心坐标系平行时,分别绕 Xt、Yt、Zt的旋转角;最后是比例校正因子,用于调整椭球大小。北京 54、西安 80 相对 WGS84 的转换参数至今没有公开,实际工作中可利用工作区内已知的北京 54 或西安 80 坐标控制点进行与 WGS84 坐标值的转换,在只有一

4、个已知控制点的情况下(往往如此) ,用已知点的北京 54 与 WGS84 坐标之差作为平移参数,当工作区范围不大时,如青岛市,精度也足够了。 以(32,121)的高斯- 克吕格投影结果为例,北京 54 及 WGS84 基准面,两者投影结果在南北方向差距约 63 米(见下表 ),对于几十或几百万的地图来说,这一误差无足轻重,但在工程地图中还是应该加以考虑的。 输入坐标(度) 北京 54 高斯投影(米) WGS84 高斯投影(米) 纬度值(X) 32 3543664 3543601 经度值(Y) 121 21310994 21310997 理解:椭球面和地球肯定不是完全贴合的,因而,即使用同一个椭

5、球面,不同的地区由于关心的位置不同,需要最大限度的贴合自己的那一部分,因而大地基准面就会不同。 3、高斯投影 (1)高斯 -克吕格投影性质 高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名“等角横切椭圆柱投影 ”,地球椭球面和平面间正形投影的一种。德国数学家、物理学家、天文学家高斯(Carl Friedrichauss,1777 一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857 1928)于 1912 年对投影公式加以补充,故名。该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而

6、得到高斯一克吕格投影公式。投影后,除中央子午线和赤道为直线外, 其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标 x 轴,赤道的投影为横坐标 y 轴,构成高斯克吕格平面直角坐标系。 高斯-克吕格投影在长度和面积上变形很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大之处在投影带内赤道的两端。由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要

7、算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,能在图上进行精确的量测计算。 (2)高斯 -克吕格投影分带 按一定经差将地球椭球面划分成若干投影带, 这是高斯投影中限制长度变形的最有效方法。分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。通常按经差 6 度或 3 度分为六度带或三度带。六度带自 0 度子午线起每隔经差 6 度自西向东分带,带号依次编为第 1、260 带。三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,

8、即自 1.5 度子午线起每隔经差 3度自西向东分带,带号依次编为三度带第 1、2120 带。我国的经度范围西起 73东至 135,可分成六度带十一个,各带中央经线依次为 75、81、87 、117、123、129 、135,或三度带二十二个。六度带可用于中小比例尺(如 1:250000)测图,三度带可用于大比例尺(如 1:10000)测图,城建坐标多采用三度带的高斯投影。 (3)高斯 -克吕格投影坐标 高斯- 克吕格投影是按分带方法各自进行投影,故各带坐标成独立系统。以中央经线投影为纵轴(x), 赤道投影为横轴(y),两轴交点即为各带的坐标原点。纵坐标以赤道为零起算,赤道以北为正,以南为负。我

9、国位于北半球,纵坐标均为正值。横坐标如以中央经线为零起算,中央经线以东为正,以西为负,横坐标出现负值,使用不便,故规定将坐标纵轴西移 500 公里当作起始轴,凡是带内的横坐标值均加 500 公里。由于高斯-克吕格投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,为了区别某一坐标系统属于哪一带,在横轴坐标前加上带号,如(4231898m,21655933m) ,其中 21 即为带号。 (4)高斯 -克吕格投影与 UTM 投影 某些国外的软件如 ARC/INFO 或国外仪器的配套软件如多波束的数据处理软件等,往往不支持高斯-克吕格投影,但支持 UTM 投影,因此常有把 UT

10、M 投影坐标当作高斯 -克吕格投影坐标提交的现象。 UTM 投影全称为“ 通用横轴墨卡托投影”,是等角横轴割圆柱投影(高斯- 克吕格为等角横轴切圆柱投影),圆柱割地球于南纬 80 度、北纬 84 度两条等高圈,该投影将地球划分为 60 个投影带,每带经差为 6 度,已被许多国家作为地形图的数学基础。UTM 投影与高斯投影的主要区别在南北格网线的比例系数上,高斯-克吕格投影的中央经线投影后保持长度不变,即比例系数为 1,而 UTM 投影的比例系数为0.9996。UTM 投影沿每一条南北格网线比例系数为常数,在东西方向则为变数,中心格网线的比例系数为 0.9996,在南北纵行最宽部分的边缘上距离中

11、心点大约 363 公里,比例系数为 1.00158。 高斯- 克吕格投影与 UTM 投影可近似采用 Xutm=0.9996 * X 高斯,Yutm=0.9996 * Y 高斯进行坐标转换。以下举例说明(基准面为 WGS84): 输入坐标(度) 高斯投影(米) UTM 投影(米) Xutm=0.9996 * X 高斯, Yutm=0.9996 * Y高斯 纬度值(X) 32 3543600.9 3542183.5 3543600.9*0.9996 3542183.5 经度值(Y) 121 21310996.8 311072.4 (310996.8-500000)*0.9996+500000 31

12、1072.4 注:坐标点(32,121)位于高斯投影的 21 带,高斯投影 Y 值 21310996.8 中前两位“21” 为带号;坐标点(32,121)位于 UTM 投影的 51 带,上表中 UTM 投影的 Y 值没加带号。因坐标纵轴西移了 500000 米,转换时必须将 Y 值减去 500000 乘上比例因子后再加 500000。 理解:高斯投影的方法就是保持赤道和中央经线不变形,把球面摊平。方法:用一个椭圆柱套住椭球,把它投影到椭圆柱上,然后打开椭圆柱即可。注:坐标点(32,121)位于高斯投影的 21 带,高斯投影 Y 值 21310996.8 中前两位“21” 为带号;坐标点(32,

13、121)位于 UTM 投影的 51 带,上表中 UTM 投影的 Y 值没加带号。因坐标纵轴西移了 500000 米,转换时必须将 Y 值减去 500000 乘上比例因子后再加 500000。 理解:高斯投影的方法就是保持赤道和中央经线不变形,把球面摊平。方法:用一个椭圆柱套住椭球,把它投影到椭圆柱上,然后打开椭圆柱即可。(4)高斯 -克吕格投影与 UTM 投影 某些国外的软件如 ARC/INFO 或国外仪器的配套软件如多波束的数据处理软件等,往往不支持高斯-克吕格投影,但支持 UTM 投影,因此常有把 UTM 投影坐标当作高斯 -克吕格投影坐标提交的现象。 UTM 投影全称为“ 通用横轴墨卡托

14、投影”,是等角横轴割圆柱投影(高斯- 克吕格为等角横轴切圆柱投影),圆柱割地球于南纬 80 度、北纬 84 度两条等高圈,该投影将地球划分为 60 个投影带,每带经差为 6 度,已被许多国家作为地形图的数学基础。UTM 投影与高斯投影的主要区别在南北格网线的比例系数上,高斯-克吕格投影的中央经线投影后保持长度不变,即比例系数为 1,而 UTM 投影的比例系数为0.9996。UTM 投影沿每一条南北格网线比例系数为常数,在东西方向则为变数,中心格网线的比例系数为 0.9996,在南北纵行最宽部分的边缘上距离中心点大约 363 公里,比例系数为 1.00158。 高斯- 克吕格投影与 UTM 投影

15、可近似采用 Xutm=0.9996 * X 高斯,Yutm=0.9996 * Y 高斯进行坐标转换。以下举例说明(基准面为 WGS84): 输入坐标(度) 高斯投影(米) UTM 投影(米) Xutm=0.9996 * X 高斯, Yutm=0.9996 * Y高斯 纬度值(X) 32 3543600.9 3542183.5 3543600.9*0.9996 3542183.5 经度值(Y) 121 21310996.8 311072.4 (310996.8-500000)*0.9996+500000 311072.4 注:坐标点(32,121)位于高斯投影的 21 带,高斯投影 Y 值 21

16、310996.8 中前两位“21” 为带号;坐标点(32,121)位于 UTM 投影的 51 带,上表中 UTM 投影的 Y 值没加带号。因坐标纵轴西移了 500000 米,转换时必须将 Y 值减去 500000 乘上比例因子后再加 500000。 理解:高斯投影的方法就是保持赤道和中央经线不变形,把球面摊平。方法:用一个椭圆柱套住椭球,把它投影到椭圆柱上,然后打开椭圆柱即可。注:坐标点(32,121)位于高斯投影的 21 带,高斯投影 Y 值 21310996.8 中前两位“21” 为带号;坐标点(32,121)位于 UTM 投影的 51 带,上表中 UTM 投影的 Y 值没加带号。因坐标纵轴西移了 500000 米,转换时必须将 Y 值减去 500000 乘上比例因子后再加 500000。 理解:高斯投影的方法就是保持赤道和中央经线不变形,把球面摊平。方法:用一个椭圆柱套住椭球,把它投影到椭圆柱上,然后打开椭圆柱即可。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报