收藏 分享(赏)

MATLAB在教学中的应用.ppt

上传人:hyngb9260 文档编号:5569251 上传时间:2019-03-08 格式:PPT 页数:35 大小:1.84MB
下载 相关 举报
MATLAB在教学中的应用.ppt_第1页
第1页 / 共35页
MATLAB在教学中的应用.ppt_第2页
第2页 / 共35页
MATLAB在教学中的应用.ppt_第3页
第3页 / 共35页
MATLAB在教学中的应用.ppt_第4页
第4页 / 共35页
MATLAB在教学中的应用.ppt_第5页
第5页 / 共35页
点击查看更多>>
资源描述

1、MATLAB 在教学中的应用,西北农林科技大学理学院,徐 钊编制,MATLAB简介,MATLAB是MATrix LABoratory 的缩写,是由美国MathWorks公司开发的工程计算软件,迄今MATLAB已推出了6.5版. 1984年MathWorks公司正式将MATLAB推向市场,从这时起,MATLAB的内核采用C语言编写,而且除原有的数值计算能力外,还新增了数据图视功能.在国际学术界,MATLAB已经被确认为准确、可靠的科学计算标准软件.在设计研究单位和工业部门,MATLAB被认作进行高效研究、开发的首选软件工具.,MATLAB的功能,MATLAB产品组是从支持概念设计、算法开发、建模

2、仿真, 到实时实现的集成环境,可用来进行: 数据分析 数值与符号计算 工程与科学绘图 控制系统设计 数字图像信号处理 建模、仿真、原型开发 财务工程、应用开发、图形用户界面设计,功能强大,MATLAB语言特点,编程效率高,允许用数学的语言来编写程序 用户使用方便,把程序的编辑、编译、连接和执行融为一体 高效方便的矩阵和数组运算 语句简单,内涵丰富 扩充能力强,交互性,开放性 方便的绘图功能 该软件由c语言编写,移植性好,语言简洁,MATLAB的环境,菜单项; 工具栏; 【Command Window】命令窗口; 【Launch Pad】分类帮助窗口; 【Workspace】工作区窗口; 【Co

3、mmand History】指令历史记录窗口; 【Current Directory】当前目录选择窗口;,MATLAB操作窗口,接受命令的窗口,M文件的编写与应用,MATLAB的M文件就是用户把要实现的命令写在 一个以m作为文件扩展名的文件中,然后由MATLAB 系统进行解释,运行出结果。即为实现某种功能的命 令集。从而使得MATLAB具有强大的可开发性与可扩 展性。MATLAB是由C语言开发而成,因此,M文件的 语法规则与C语言几乎完全一样。,M文件可在命令窗口直接调用,只需键入文件名。,不在命令窗口显示结果,调用M文件shili.m,MATLAB在微积分中的应用,1、求函数值,例1 在命令

4、窗口中键入表达式 并求 时的函数值。, x=2,y=4 z=x2+exp(x+y)-y*log(x)-3,x = 2 y = 4 z = 401.6562,命令窗口显示结果:,例2 用循环语句编写M文件计算ex的值,其中x,n为输入 变量,ex的近似表达式为,function y=e(x,n) y=1;s=1; for i=1:ns=s*i;y=y+xi/s; end y, y=e(1,100)ans =yy =2.7183,调用函数 M文件,MATLAB在微积分中的应用,2、求极限,例3 求极限, syms n; limit(sqrt(n+sqrt(n)-sqrt(n),n,inf),ans

5、 = 1/2,LIMIT Limit of an expression. LIMIT(F,x,a) takes the limit of the symbolic expression F as x - a. LIMIT(F,x,a,right) or LIMIT(F,x,a,left) specify the direction of a one-sided limit.,定义符号变量,MATLAB在微积分中的应用,3、求导数, syms x y=10x+x10+log(x)y =x10+10x+log(x) diff(y),ans =10*x9+10x*log(10)+1/x,定义X为符号

6、变量,求,Difference:差分 Differential:微分的, syms x; y=log(1+x); a=diff(y,x,2)a =-1/(1+x)2 x=1;eval(a) ans =-0.2500,求,求,将符号表达式 转换成数值表达式,例6 设,,求, syms x y; z=exp(2*x)*(x+y2+2*y); a=diff(z,x) b=diff(z,y) c=diff(z,x,2) d=diff(z,y,2) e=diff(a,y),a =2*exp(2*x)*(x+y2+2*y)+exp(2*x)b =exp(2*x)*(2*y+2)c =4*exp(2*x)*

7、(x+y2+2*y)+4*exp(2*x) d =2*exp(2*x) e =2*exp(2*x)*(2*y+2),MATLAB在微积分中的应用,4、求极值和零点, fzero(3*x5-x4+2*x3+x2+3,0),ans = -0.8952,起始点,函数,命令函数, fminbnd(3*x5-x4+2*x3+x2+3,-1,2) ans = -1.1791e-005,MATLAB在微积分中的应用,4、求极值和零点, X,FVAL= FMINSEARCH(x(1)2+2.5*sin(x(2)- x(3)*x(1)*x(2)2,1 -1 0),X = 0.0010 -1.5708 0.000

8、8 FVAL =-2.5000,MATLAB在微积分中的应用,5、求积分,例9 求不定积分, int(cos(2*x)*cos(3*x),ans =1/2*sin(x)+1/10*sin(5*x),例10 求定积分,Integrate:积分, eval(int(x2*log(x),1,exp(1) ans = 4.5746, x=1:0.01:exp(1); y=x.2.*log(x); trapz(x,y) ans = 4.5137,例10 求定积分, int(exp(-x2/2),0,1)ans =1/2*erf(1/2*2(1/2)*2(1/2)*pi(1/2), x=0:0.01:1;

9、 y=exp(-x.2/2); trapz(x,y) ans = 0.8556, y=exp(-x.2/2); quadl(y,0,1) ans = 0.8556,变步长数值积分,梯形法数值积分,MATLAB在微积分中的应用,5、求积分,例11 求二重积分, syms x y; f=y2/x2; int(int(f,x,1/2,2),y,1,2)ans =7/2,符号积分, f=(y.2)./(x.2); dblquad(f,1/2,2,1,2) ans = 3.5000,数值计算,MATLAB在微积分中的应用,6、解微分方程,例12 计算初值问题:, dsolve(Dy=x+y,y(0)=1

10、,x),ans =-x-1+2*exp(x),一定要大写,MATLAB在微积分中的应用,7、级数问题,例13 求函数 的泰勒展开式,并计算该 函数在x=3.42时的近似值。, syms x; taylor(sin(x)/x,x,10),ans =1-1/6*x2+1/120*x4-1/5040*x6+1/362880*x8, x=3.42; eval(ans) ans = -0.0753,MATLAB在线性代数中的应用,1、矩阵的基本运算,例1 已知, a=4 -2 2;-3 0 5;1 5 3; b=1 3 4;-2 0 -3;2 -1 1; a*b,=AB,MATLAB在线性代数中的应用,

11、1、矩阵的基本运算,例1 已知, inv(a) ans =0.1582 -0.1013 0.0633-0.0886 -0.0633 0.16460.0949 0.1392 0.0380,MATLAB在线性代数中的应用,1、矩阵的基本运算,例1 已知, rank(a) ans =3,MATLAB在线性代数中的应用,1、矩阵的基本运算,例1 已知, a/b ans =0 0 2.0000-2.7143 -8.0000 -8.14292.4286 3.0000 2.2857,MATLAB在线性代数中的应用,1、矩阵的基本运算,例1 已知, ab ans =0.4873 0.4114 1.00000.

12、3671 -0.4304 0-0.1076 0.2468 0,MATLAB在线性代数中的应用,2、解线性方程组, a=1 -1 4 -2;1 -1 -1 2;3 1 7 -2;1 -3 -12 6; rref(a),ans =,1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1,将矩阵A化为最简阶梯形,R(A)=4=n; 所以方程组只有零解。,RREF Reduced row echelon form,MATLAB在线性代数中的应用,2、解线性方程组,求齐次方程组 的基础解系, a=2 3 1;1 -2 4;3 8 -2;4 -1 9; b=4;-5;13;-6; c=null(a

13、,r) c =-2 1 1,求非齐次方程组 的一个特解, l u=lu(a); x0=u(lb) x0 =-3124/135 3529/270 2989/270,所以方程组的一般解为,3、将矩阵对角化, a=-1 2 0;-2 3 0;3 0 2; v,d=eig(a) v = 0 379/1257 379/1257 0 379/1257 379/1257 1 -379/419 -379/419 d =2 0 0 0 1 0 0 0 1,A的特征值为2,1,1,4、用正交变换化二次型为标准形, a=1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; format u t=schu

14、r(a),u =0.0846 0.4928 0.7071 0.50000.0846 0.4928 -0.7071 0.5000 -0.7815 -0.3732 0 0.50000.6124 -0.6124 0 0.5000 t = -0.0000 0 0 00 -0.0000 0 0 0 0 0 00 0 0 4.0000, a=1 1 1 1;1 1 1 1;1 1 1 1;1 1 1 1; format rat u t=schur(a),u = 596/7049 1095/2222 985/1393 1/2 596/7049 1095/2222 -985/1393 1/2 -1198/1533 -789/2114 0 1/2 1079/1762 -1079/1762 0 1/2 t = * 0 0 0 0 * 0 0 “*”表示0 0 0 0 近似于零 0 0 0 4,FORMAT RAT Approximation by ratio of small integers.,4、用正交变换化二次型为标准形,结论:作正交变换,则有,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 教学研究

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报