1、ansys 单元之间的连接问题论坛里常有人问不同单元之间的连接问题,我自己也一直被这个问题所困绕,最近从 ANSYS工程分析进阶实例上知道了 ANSYS 中不同单元之间的连接原则。感觉收收获不小,现把它上传与大家共享。一般来说,按“杆梁壳体” 单元顺序,只要后一种单元的自由度完全包含前一种单元的自由度,则只要有公共节点即可,不需要约束方程,否则需要耦合自由度与约事方程。例如:(1)杆与梁、壳、体单元有公共节点即可,不需要约束方程。(2)梁与壳有公共节点怒可,也不需要约束写约束方程;壳梁自由度数目相同,自由度也相同,尽管壳的 rotz 是 虚的自由度,也不妨碍二者之间的关系,这有点类同于梁与杆的
2、关系。(3)梁与体则要在相同位置建立不同的节点 ,然后在节点处耦合自由度与施加约束方程。(4)壳与体则也要相同位置建立不同的节点 ,然后在节点处耦合自由度与施加约束方程。上面所述的不同单元之间的接连方法主要是用耦合自由度和约束方程来实现的,有一定的局限性,只适用于小位移,下面介绍一种支持大位移算法的方法,MPC 法。MPC 即 Multipoint Constraint,多点约束方程,其原理与前面所说的方程的技术几乎一致,将不连续、自由度不协调的单元网格连接起来,不需要连接边界上的节点完全一一对应。MPC 能够连接的模型一般有以下几种。solid 模型 -solid 模型shell 模型-sh
3、ell 模型solid 模型 -shell 模型solid 模型 -beam 模型shell 模型-beam 模型在 ANSYS 中,实现上述 MPC 技术有三种途径。(1)通过 MPC184单元定义模型的刚性或者二力杆连接关系。定义 MPC184单元模型与定义杆的操作完全一致,而 MPC 单元的作用可以是刚性杆(三个自由度的连接关系)或者刚性梁(六个自由度的连接关系) 。(2)利用约束方程菜单路径 Main MenupreprocessorCoupling/Ceqnshell/solid Interface 创建壳与实体模型之间的装配关系。(3)利用 ANSYS 接触向导功能定义模型之间的装
4、配关系。选择菜单路径 Main MenupreprocessorModelingCreatContact Pair,弹出一序列的接触向导对话框,按照提示进行操作,在创建接触对前,单击 Optional setting 按钮弹出 Contact properties 对话框,将 Basic 选项卡中的 Contact algorithm 即接触算法设置为 MPC algorithm。或者,在定义完接触对后,再将接触算法修改为 MPC algorithm,就相当于定义 MPC 多点约束关系进行多点约束算法。单元类型的选择问题初学 ANSYS 的人,通常会被 ANSYS 所提供的众多纷繁复杂的单元类
5、型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。单元类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在 ANSYS 的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单
6、元。对于梁单元,常用的有 beam3,beam4,beam188这三种,他们的区别在于:实际选用单元类型的时候,到底是选择第一类还是选择第二类呢?也就是到底是选用六面体还是带中间节点的四面体呢?如果所分析的结构比较简单,可以很方便的全部划分为六面体单元,或者绝大部分是六面体,只含有少量四面体和棱柱体,此时,应该选用第一类单元,也就是选用六面体单元;如果所分析的结构比较复杂,难以划分出六面体,应该选用第二类单元,也就是带中间节点的四面体单元。新手最容易犯的一个错误就是选用了第一类单元类型(六面体单元 ),但是,在划分网格的时候,由于结构比较复杂,六面体划分不出来,单元全部被划分成了四面体,也就是
7、退化的六面体单元,这种情况,计算出来的结果的精度是非常糟糕的,有时候即使你把单元划分的很细,计算精度也很差,这种情况是绝对要避免的。六面体单元和带中间节点的四面体单元的计算精度都是很高的,他们的区别在于:一个六面体单元只有8个节点,计算规模小,但是复杂的结构很难划分出好的六面体单元,带中间节点的四面体单元恰好相反,不管结构多么复杂,总能轻易地划分出四面体,但是,由于每个单元有10个节点,总节点数比较多,计算量会增大很多。前面把常用的实体单元类型归为2类了,对于同一类型中的单元,应该选哪一种呢?通常情况下,同一个类型中,各种不同的单元,计算精度几乎没有什么明显的差别。选取的基本原则是优先选用编号
8、高的单元。比如第一类中,应该优先选用 solid185。第二类里面应该优先选用solid187。ANSYS 的单元类型是在不断发展和改进的,同样功能的单元,编号大的往往意味着在某些方面有优化或者增强。对于实体单元,总结起来就一句话:复杂的结构用带中间节点的四面体,优选solid187,简单的结构用六面体单元,优选 solid185。ansys 单元类型种类统计单元名称 种类 单元号LINK (共 12种) 1,8,10,11,31,32,33,34,68,160,167,180PLANE (共20种)2,13,25,35,42,53,55,67,75,77,78,82,83,121,145,1
9、46,162,182,183,223BEAM (共09种)3,4,23,24,44,54,161,188,189SOLID (共30种)5,45,46,62,64,65,69,70,87,90,92,95,96,97,98,117,122,123,127,128,147,148,164,168,185,186,187,191,226,227COMBIN (共05种)7,14,37,39,40INFIN (共04种 )9,47,110,111CONTAC (共05种)12,26,48,49,52PIPE (共 06种)16,17,18,20,59,60MASS (共03种)21,71,166MA
10、TRIX (共02 种)27,50SHELL (共19种 )28,41,43,51,57,61,63,91,93,99,131,132,143,150,157,163,181,208,209FLUID (共14种 )29,30,38,79,80,81,116,129,130,136,138,139,141,142SOURC (共01种)36HYPER (共06种)56,58,74,84,86,158VISCO (共05种)88,89,106,107,108CIRCU (共03种 )94,124,125TRANS (共02种)109,126INTER (共05种)115,192,193,194,
11、195HF (共03种)118,119,120ROM (共01种)144SURF (共04种)151,152,153,154COMBI (共01种)165TARGE (共02种)169,170CONTA (共06种 )171,172,173,174,175,178PRETS (共01种)179MPC (共 01种)184MESH (共01种)20ANSYS 静力学中常用的单元类型类别 形状和特性 单元类型杆杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩普通双线性LINK1,LINK8LINK10梁梁单元则既可以承受拉,压,还可以承受弯矩普通截面渐变塑性考虑剪切变形BEAM3,BE
12、AM4 BEAM54,BEAM44BEAM23,BEAM24BEAM188,BEAM1891)beam3是2D 的梁单元,只能解决2维的问题。2)beam4是3D 的梁单元,可以解决3维的空间梁问题3)beam188是3D 梁单元,可以根据需要自定义梁的截面形状。管 普通浸入塑性PIPE16,PIPE17,PIPE18PIPE59PIPE20,PIPE602-D 实体 四边形三角形超弹性单元粘弹性大应变PLANE42,PLANE82,PLANE182PLANE2HYPER84,HYPER56,HYPER74VISCO88VISO106,VISO108谐单元P 单元PLANE83,PPNAE25
13、PLANE145,PLANE1463-D 实体常用的实体单元类型有 solid45, solid92,solid185,solid187这几种。六面体单元和带中间节点的四面体单元的计算精度都是很高的,他们的区别在于:一个六面体单元只有8个节点,计算规模小,但是复杂的结构很难划分出好的六面体单元,带中间节点的四面体单元恰好相反,不管结构多么复杂,总能轻易地划分出四面体,但是,由于每个单元有10个节点,总节点数比较多,计算量会增大很多。块四面体层各向异性超弹性单元粘弹性大应变P 单元SOLID45,SOLID95,SOLID73,SOLID185solid45,solid185可以归为第一类,他们
14、都是六面体单元,都可以退化为四面体和棱柱体,单元的主要功能基本相同,(SOLID185 还可以用于不可压缩超弹性材料)SOLID92,SOLID72,SOLID187Solid92, solid187可以归为第二类,他们都是带中间节点的四面体单元,单元的主要功能基本相同。SOLID46SOLID64,SOLID65HYPER86,HYPER58,HYPER158VISO89VISO107SOLID147,SOLID148对于实体单元,总结起来就一句话:复杂的结构用带中间节点的四面体,优选 solid187,简单的结构用六面体单元,优选 solid185。壳薄壁结构,最好是选用 shell 单元
15、四边形轴对称层剪切板P 单元SHELL93,SHELL63,SHELL41,SHELL43,SHELL181SHELL51,SHELL61SHELL91,SHELL99SHELL28SHELL150实际工程中常用的 shell 单元有shell63,shell93。 shell63是四节点的 shell 单元(可以退化为三角形),shell93是带中间节点的四边形 shell 单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比 shell63更高,但是由于节点数目比shell63多,计算量会增大。对于一般的问题,选用shell63就足够了。Ansys 单元类型设置ANSY
16、S 的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;单元类型选择方法:1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;二、单元类型选择方法(续一)2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D 和3D 的单元分类,则根据结构的维数继续缩小单元类型选择的范围;三、单元类型选择方法(续二)4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时
17、有四种单元类 型:Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元;四、单元类型选择方法(续三)5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”;五、单元类型选择方法(续四)6.根据分析问题的性质选择单元类型,如确定为2D 的 Beam 单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3
18、”或“Beam4” ,若是变截面的非对称的问题则用“Beam54”。六、单元类型选择方法(续五)7.进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作:仔细阅读其单元描述,检查是否与分析问题的背景吻合、了解单元所需输入的参数、单元关键项和载荷考虑;了解单元的输出数据;仔细阅读单元使用限制和说明。Mass21是由6个自由度的点元素,x,y,z 三个方向的线位移以及绕 x,y,z 轴的旋转位移。每个自由度的质量和惯性矩分别定义。Link1可用于各种工程应用中。根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。这个2维杆元素是一个单
19、轴拉压元素,在每个节点都有两个自由度。X,y,方向。铰接,没有弯矩。Link8可用于不同工程中的杆。可用作模拟构架,下垂电缆,连杆,弹簧等。3维杆元素是单轴拉压元素。每个点有3个自由度。X,y,z 方向。作为铰接结构,没有弯矩。具有塑性,徐变,膨胀,应力强化和大变形的特性。Link10 3维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。对于单向轴拉,如果元素变成受压,则硬度就消失了。此特性可用于静力钢缆中,当整个钢缆模 拟成一个元素时。当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。该元素是 shell41的线形 式,keyopt(1)=2,cloth选项。如果分析
20、的目的是为了研究元素的运动,(没有静定元素) ,可用与其相似但不能松弛的元素(如 link8 和 pipe59)代替。当最终的结构是一个拉紧的结构的时候,Link10也不能用作静定集中分析中。但是由于最终局于一点的结果松弛条件也是有可能的。 在这种情况下,要用其他的元素或在 link10中使用 显示动力技术。Link10每个节点有3个自由度,x,y,z 方向。在拉(或压)中都没有抗弯能 力,但是可以通过在每个 link10元素上叠加一个小面积的量元素来实现。具有应力强化和大变形能力。Link11用于模拟水压圆筒以及其他经受大旋转的结构。此元素为单轴拉压元素,每个节点有3个自由度。X,y,z 方
21、向。没有弯扭荷载。Link180 可用于不同的工程中。可用来模拟构架,连杆,弹簧,等。此3维杆元素是单轴拉压元素,每个节点有3个自由度。X,y,z 方向。作为胶接结构,不考虑弯矩。 具有塑性,徐变,旋转,大变形,大应变能力。link180在任何分析中都包括应力强化项 (分析中,nlgeon,on),此为缺省值。支持弹性,各向同 性硬化塑性,运动上的硬化塑性,希尔各向异性塑性,chaboche 非线性硬化塑性和徐变等。Beam3单轴元素,具有拉,压,弯性能。在每个节点有3个自由度。X,y,方向以及绕 z 轴的旋转。Beam4是具有拉压扭弯能力的单轴元素。每个节点有6个自由度,x,y,z,绕 x,
22、y,z 轴。具有应力强化和大变形能力。在大变形分析中,提供了协调相切劲度矩阵选项。Beam23单轴元素,拉压和受弯能力。每个节点有3个自由度。该元素具有塑性,徐变,膨胀能力。如果这些影响都不需要,可使用 beam3,2维弹性梁。Beam24 3维薄壁梁。单轴元素,任意截面都有拉压、弯曲和 St. Venant 扭转能力。可用于任何敞开的和单元截面。该元素每个节点有6个自由度:x,y,z 和绕 x,y,z 方向。该元素在轴向和自定义的截面方向都具有 塑性,徐变和膨胀能力。若不需要这些能力,可用弹性梁beam4或 beam44。Pipe20和 beam23也具有塑性,徐变和膨胀能力。截面是通过一系
23、 列的矩形段来定义的。梁的纵轴向方向由第三个节点指明。Beam44 3维弹性锥形不对称梁。单轴元素,具有拉压扭和弯曲能力。该元素每个节点有6个自由度:x,y,z 和绕 x,y,z 方向。该元素允许每个端点具有不均匀几何 特性,并且允许端点与梁的中性轴偏移。若不需要这些特性,可采用 beam4。该元素的2维形式是 beam54。该元素也提供剪应变选项。还提供了输出作用 于单元上的与单元同方向的力的选项。具有应力强化和大变形能力。Beam54单轴元素,拉压和受弯能力. 每个节点有3个自由度。该元素允许在端点有不均匀几何性质。允许端点偏移梁的轴心。无塑性徐变或膨胀能力。有应力强化能力。剪切变形和弹性
24、基础影响也体现在选项中。还可打印作用于元素上的沿元素方向的力。Beam188 3维线性有限应力梁。适用于分析短粗梁结构。该元素基于 timoshenko 梁理论。包括剪应变。Beam188是一个三维线性(2节点)梁。每个节点有 6或7个自由度,具体依赖于 keyopt(1)的值。Keyopt(1)=0为每个节点6个自由度。包括 x,y,z 方向和绕 x,y,z 方向。1还考虑了 扭转自由度。该元素适用于线性,大旋转和大应变非线性。包括应力强化项在任何分析中,都缺省为 nlgeom=on.。该选项为元素提供了分析曲屈、侧移和 扭转的能力。Beam189 3维二次有限应力梁。适用于分析短粗梁结构。
25、该元素基于 timoshenko 梁理论。包括剪应变。Beam189是一个三维二次(3节点)梁。每个节点有 6或7个自由度,具体依赖于 keyopt(1)的值。Keyopt(1)=0为每个节点6个自由度。包括 x,y,z 方向和绕 x,y,z 方向。1还考虑了 扭转自由度。该元素适用于线性,大旋转和大应变非线性。包括应力强化项在任何分析中,都缺省为 nlgeom=on.。该选项为元素提供了分析曲屈、侧移和 扭转的能力。Plane2 2维6节点3角形结构实体。具有二次位移,适用于模拟不规则网格。该元素有6个结点定义,每个节点2个自由度,分比为 x,y 方向。可将其用于平面单元(平面应力或平面应变
26、)或是轴对称单元。具有塑性,徐变,膨胀,应力强化,大变形,大应变能力。Plane25 轴对称协调4节点结构体。用于承受非轴对称荷载的2维轴对称结构。如弯曲,剪切或扭转。该元素由4个节点定义,每个节点3个自由度:x,y,z 方向。对于 非扭转节点,这3个方向分别代表半径,轴向和切线方向。给元素是 plane42的一般模式,2为结构单元,和在不一定为轴对称。Plane42 2维实体。该元素即可用于平面单元(平面应力或平面应变)也可用于轴对称单元。该元素由4个节点定义,每个节点2个自由度:x,y 方向。具有塑性,徐变,膨胀,应力强化,大变形,大应变能力。Plane82 二维8节点实体。该元素是 pl
27、ane42的高次形式。它为混合(四边形三角形)自动网格划分提供了更精确的求解结果,并能承受不规则形状而不会产生任何 精度上的损失。8节点元素具有位移协调形状,适用于模拟弯曲边界。该元素由8个节点定义,每个节点2个自由度,x,y 方向。可用于平面单元也可用于轴对称 单元。具有塑性,徐变,膨胀,应力强化,大变形,大应变能力。并提供不同的输出选项。Plane83 二维8节点实体。用于承受非轴对称荷载的2维轴对称结构。如弯曲,剪切或扭转。该元素每个节点3个自由度:x,y,z 方向。对于非扭转节点,这3个方向分 别代表半径,轴向和切线方向。该元素是 plane25的高次形式。它为混合(四边形三角形)自动
28、网格划分提供了更精确的求解结果,并能承受不规则形状而 不会产生任何精度上的损失。该元素也是 plane82的一般轴向形式,其荷载不需要对陈。Plane145 二维四边形实体 p-元素。Plane145 是一个四边形 p-元素,支持最高为8次的多项式。该元素由8个节点定义,每个节点2个自由度,x,y 方向。可用于平面单元也可用于轴对称单元。Plane146 二维三角形实体 p-元素。Plane145 是一个三角形 p-元素,支持最高为8次的多项式。该元素由6个节点定义,每个节点2个自由度,x,y 方向。可用于平面单元也可用于轴对称单元。Plane182 2维4节点实体。该元素用于2维模型。可用于
29、平面单元也可用于轴对称单元。该元素由4个节点定义,每个节点2个自由度,x,y 方向。可用于平面单元也可用 于轴对称单元。具有塑性,超弹性,应力强化,大变形,大应变能力。可用来模拟几乎不能压缩的次弹性材料和完全不能压缩的超弹性材料的变形。Plane183 2维8节点实体。具有二次位移,适用于模拟不规则网格。该元素由8个节点定义,每个节点2个自由度,x,y 方向。可用于平面单元也可用于轴对称单元。具有 塑性,超弹性,应力强化,大变形,大应变能力。可用来模拟几乎不能压缩的次弹性材料和完全不能压缩的超弹性材料的变形。支持初始应力。并提供不同的输出选 项。Solid45 3-D 实体。用于3维实体结构模
30、型。 8个节点,每个节点3个自由度,x,y,z 三个方向。该元素有塑性,徐变,膨胀,应力强化,大变形和大应变能力。提供 带有沙漏控制的缩减选项。各向异性选用 solid64.。solid45 的高次形式使用 solid95.Solid46 3维8节点分层实体。是 solid45的分层形式,用于模拟分层壳或实体。该元素允许达到250层。如果需要超过250层,需要用到一个构成矩阵选项。该元素也可通过选择的方法进行累积。每个节点有3个自由度:x,y,z 方向。Solid64 3维各向异性实体。该元素有8个节点定义,每个节点3个自由度:x,y,z 方向。具有应力强化和大变形能力。提供限制特大位移以及定
31、义输出位置的选项。该元素有各种不同的应用,如用于晶体和合成物。Solid65 3维钢筋混凝土实体。该元素用含钢筋或不含钢筋的3维实体。该实体能被拉裂或压碎。用于混凝土时,例如,元素的实体能力可以用来模拟混凝土,而钢筋能力用 来模拟钢筋性能。在其他情况下,该元素还可用于加固合成物(如玻璃纤维)和地质材料(如石块) 。元素由8个节点定义,每个节点3个自由度:x,y,z 方 向。可以定义3个不同钢筋。混凝土元素与 solid45相似,只是比它多了能被拉裂和压碎的能力。该元素最重要的方面是它具有非线性材料的性能。混凝土可 以(在三个正交方向)开裂、压碎、塑性变形和徐变。钢筋可以抗拉压,但不能抗剪。也可
32、以具有塑性变形和徐变的性能。Solid92 3维10节点四面体结构实体。具有二次位移,适用于模拟不规则网格。该元素由10个节点定义,每个节点3个自由度:x,y,z 方向。具有塑性,徐变,膨胀,应力强化,大变形,大应变能力。Solid95 3维20节点实体。该元素是 solid45的高次形式。能够用于不规则形状,而且不会在精度上有任何损失。该元素具有位移协调形状,适用于模拟弯曲边界。 该元素由20个节点定义,每个节点3个自由度:x,y,z 方向。该元素具有空间的任何方向。并具有塑性,徐变,膨胀,应力强化,大变形,大应变能力。同时 提供多种输出选项。Solid147 3维砖实体 p-元素。可支持最
33、高为8次的多项式。该元素由20个节点定义,每个节点3个自由度:x,y,z 方向。该元素具有空间的任何方向。Solid148 3维四面体实体 p-元素。可支持最高为8次的多项式。该元素由10个节点定义,每个节点3个自由度:x,y,z 方向。Solid185 3维8节点实体。该元素用来模拟3维实体。由8个节点定义,每个节点3个自由度:x,y,z 方向。具有塑性,超弹性,应力强化,徐变,大变形,大应变能力。可用来模拟几乎不能压缩的次弹性材料和完全不能压缩的超弹性材料的变形。Solid186 3维20 节点实体。具有二次位移,适用于模拟不规则网格。该元素由20个节点定义,每个节点3个自由度:x,y,z
34、 方向。该元素具有空间的任何方向。具有 塑性,超弹性,应力强化,徐变,大变形,大应变能力。可用来模拟几乎不能压缩的次弹性材料和完全不能压缩的超弹性材料的变形。同时提供多种输出选项。Solid187 3维10节点四面体实体。具有二次位移,适用于模拟不规则网格。该元素由10个节点定义,每个节点3个自由度:x,y,z 方向。该元素具有空间的任何方 向。具有塑性,超弹性,应力强化,徐变,大变形,大应变能力。可用来模拟几乎不能压缩的次弹性材料和完全不能压缩的超弹性材料的变形。Solid191 3维20节点分层实体。是 solid95的分层形式,用于模拟分层的壳或实体。该元素允许达到100层。如果超过10
35、0层,可通过累积的方法得到。该元素 由20个节点定义,每个节点有3个自由度:x,y,z 方向。具有应力强化能力。同时提供多种输出选项。Shell28 剪扭面板。该元素用来在框架结构中传递剪力。该元素每个节点 3个自由度: x,y,z方向或绕 x,y,z 轴旋转方向。Shell41 薄膜壳。该元素为3为元素,有膜刚度没有弯曲刚度。用于弯曲处于次要位置的壳结构。该元素每个节点3个自由度: x,y,z 方向。该元素具有可变厚度,应力强化,大应变和 cloth 选项。Shell43 4节点塑性大应变桥。尤其适用于模拟线性,弯曲,中厚度壳结构。该元素每个节点3个自由度: x,y,z 方向和绕 x,y,z
36、 轴旋转方向。在平面内的所有方向,变形都是线性的。对于平面外运动,可使用混合张量差值法。该元素具有塑性,徐变,应力强 化,大变形,大应变能力。Shell51 轴对称壳。每个节点有4个自由度:x,y,z 方向和绕 z 轴旋转方向。圆锥壳元素的极限方向会产生圆柱桥或圆环壳。该壳单元具有线性变化的厚度。具有塑性,徐变,膨胀,应力强化,大变形,扭转能力。Shell61 轴对称协调壳体。该元素每个节点4个自由度: x,y,z 方向和绕 z 轴旋转方向。荷载可以是轴对称的也可以是非轴对称的。Shell63 弹性壳。具有弯矩和薄膜特性。可承受与平面同方向及法线方向的荷载。每个节点6个自由度:x,y,z 方向
37、和绕 x,y,z 轴方向。有应力强化和大变形能力。提供用于大变形分析的连续性相切矩阵。Shell91 非线性分层壳体。该元素用于分层壳模型或者用来模拟厚的夹层结构。一般shell99比 shell91效率更高。使用夹层选项的最高允许的不同层数为 100。Shell99可以允许更多的层数,但不具有非线性特性。每个节点6个自由度:x,y,z 方向和绕 x,y,z 轴方向。Shell93 8节点壳体。尤其适用于模拟弯曲壳体。每个节点6个自由度:x,y,z 方向和绕 x,y,z轴方向。在平面内的各方向变形都为二次。具有塑性,应力强化,大变形,扭转能力。Shell99 线性分层壳体。用于模拟壳模型的分层
38、部分。但是 shell99不像 shell91具有非线性特性,它具有较小的公式编辑时间。shell99最多可允许 250层。如果超过250层,可以由用户输入构成矩阵。每个节点6个自由度:x,y,z 方向和绕 x,y,z 轴方向。Shell143 4节点塑性小应变壳体。尤其适用于模拟非线性,平面或弯曲,薄或中厚的壳体。每个节点6个自由度:x,y,z 方向和绕 x,y,z 轴方向。在平面内的所有方 向,变形都是线性的。对于平面外运动,可使用混合张量差值法。具有塑性,徐变,应力强化,大变形,小应变能力。对于大变形分析提供协调正切刚度矩阵(即, 由主正切刚度矩阵加上协调应力刚度矩阵)选项。对于大应变,
39、包括由于大的膜应力导致的厚度变化,可以使用塑性大应变壳 shell43。对于薄壳,如果不需 要塑性和徐变,可以使用弹性四边形壳 shell63。Shell150 8节点壳体 p-元素。支持最高为8次的多项式。该元素尤其适用于模拟弯曲壳。每个节点6个自由度:x,y,z 方向和绕 x,y,z 轴方向。Shell181 有限应变壳。适用于分析薄到中厚的壳体。该元素为4节点元素,每个节点6个自由度:x,y,z 方向和绕 x,y,z 轴方向。脱化的三角形选项只能在产生网格 以后用作填充单元。该元素尤其适用于线性,大旋转,和或大应变非线性分析。在非线性分析中,可以计算出壳厚度的变化。在元素范围内,支持完全和简化的积 分制度。Shell181还解决的分布力的附加影响。在 shell43遇到收敛困难时,可以由 shell181来代替。Combin14 弹簧阻尼。可用于一维、二维或三维空间在纵向或扭转的弹性阻尼。考虑为纵向弹簧阻尼时,该元素受单轴向拉压,每个节点有3个自由度,x,y,z 方 向。不考虑弯曲或扭转。考虑为扭转弹簧阻尼时,该元素受纯扭转,每个节点有3个绕 x,y,z 旋转方向的自由度。不考虑弯曲或轴向荷载。该元素没有质量。 质量可用 mass21来仿真。