1、 30 6 2008 M 112 null null null ( 1982null ), 3 , 2 , V 3 , 1 Z _ M ? e ;u : ( “ ), q , Enullm ai:l zhaoyk43 163. com. 1,5 H p | 0, 7 a f | , V | u W ( 0, 1) 2 ; P c H p d H p , H p | 0,d H p S | 1, O P V % . m nV U .null null 2) s V E $ , V , V V U A = ( S, Ld, N, R ), T : A V 1 ; S , | 0, 1; L b W
2、 , LV G | ;7 d b W , d | 2 ; N # , M oore , m 1 U . N = s1, , si, ,s8 , i! 1, 2, 3, 4, 5, 6, 7, 8, si ! 0, 1, iV U Z _ | , si | 1V U V / B | Z _ i, | 0V U ;R ? 5 , 1 “ V r ,null( t) = (x, y) T V U t H b W U S( x, y), V , : xV U U S , yV U U S .7 4 1 8 Z _ , 5 | % 3H q : 1)G ( x, y ) # d 0 V ? $ ;2)P
3、 (x, y) # d 0 V ? $ ; 3) Hq 1) H q 2) V # $ q 1 Y V 4 9 | ,pk = pija# x iajV U | k # a U S ; aabV U # b W a U S ; pkV U | k # $ q ; pijV U | kU S ( i, j) ; pabV U # b W .m 1null M oore # Fig. 1null M oore neighbornull null 3 H q , q % N =s1, , si, , s8 , 4 Z _ si | 1, | 0. N % t+ 1 H V | 1 M U S nul
4、l( t + 1) =(x - 1, y - 1), null s1 = 1(x - 1, y), null s2 = 1(x - 1, y + 1), null s3 = 1(x, y - 1), null s4 = 1(x, y + 1), null s5 = 1(x + 1, y - 1), null s6 = 1(x + 1, y), null s7 = 1(x + 1, y + 1), null s8 = 11null2null V V E L Cnull null V V E ,1 L C ? V E | B “ . 1 V i a V a .null null i , | V V
5、 ! M I | , V H M ,M W “ . C L V H 1 I n M , L = “ 1 4 ? l 1 I n i % . y N h A 1 , i , V Y V L C W “ . 9 1 y 5 8 C , “ L C A 1 O M 1 1 i t 1 E L “ d 3 .null null V V . ? “ null= 1V U B 9 T , 7 null! ( 0, 1)VU ? T , ? H l 1 ? 1 ; ) B + 5 a , * l ; 8 K f / t N M M , E T .1null4null % Z null null 1) Z .
6、 B Z , C y V C # C S , V V p V T 2 m . p V ? Dmxn,pk = pija# x V 4 V F y _ K l , ? B f . 6 B Z , V 1 + , B T ? 5 , _ # ? 5 . _ # ? 5 V _ Z _ I - / B # # # f , ? 51 p # ? C - M oore # S = , T C 5 l + s , V “ V - + s W ,i + s - # O “ + s .null null 2) l Z . ? “ null ! I B Z , 6 B Z ) y 5 C “ , 4 . D 5
7、 + 4 , | 1 K = K v K l (MMAS ) . K = = Q V K ; K v K l | K u W pm in, pmax W .2null k s 2null1null null null V E V s 6 .null null 1null S ! , G, P, N, D,maxstep, step, num, m, n, null, p, maxstep V U Kv H , stepV U H , numV U V .null null 2null | num V i , V :V E 1 R 2, r ? / B .null null 6null K .n
8、ull null k 12 12 % H m ,p d B . V num = 15,K v H maxstep= 100. ( 2, 2), ( 11, 11). ? “ null= 0null4, 9 p = 5.null null k s 2F , I l Z 5 . k 1 1 1 ? D _ # ? 5 ; k 2 1 1 K = K v K l l Y .2null2null k T2null2null1null k 1null null B 1 ? D , T m 3 U .( a) D null null null null null null null null ( b )
9、D null null null null null null null null null null ( c) D 1m 3null ? DF ig. 3null H euristicm atrix Dnull null m 3 ( a) 3( b) s V U H p , V U 1 b W , V U E 100Q s K ,P / ( 2, 2), ( 11, 11).“ T 1 , k : c 2F k l f 1 , m 3( c) U .m 3( c) U S V U Q ,: U S V U , m 9 “ V r Z T .null null = 1 _ # ? 5 , T
10、m 4 U . A f % , 6 2F k 1 9 : c , m 4( c) U .( a) ? 5 null null null null null null null null null null ( b ) ? 5 null null null null null null null null null null ( c) ? 5 1m 4null _ # ? 5F ig. 4null S ingle d irection and single ne ighbor cellular ru lenull null m 3a4 V n : K v Q 100 H f / , ? D D
11、f s v , I l f , D l A 1 D z ,7 O D 40 2 null null null * . ? 9 M ? Z E D . : 2 v , 2007. 3 null , N .B V E TSP 5 s p E J.9 , 2001, 24 ( 12): 1328- 1333.W u B in, Sh i Zhongzh .i An an t co lony algorithm based partitionalgorithm for TSP J. Ch in ese Journal of C ompu ter, 2001, 24( 12 ): 1328- 1333.
12、 4 null Chopard B, DrozM. “ d 1 E M . ,u C ,r . : b v , 2003. 5 null Dorigo M. Optim ization, learn ing and natu ral algorithm s D .M ilan: Un iversit Politecn ico dMi ilano, 1992. 6 null w . V E ? # g ) D. q : q v , 2007. 7 null ,f , . , .C ? E # M . : S , 2005. 8 null i ,y , = S , .V E l s J.9 , 2007, 30( 8 ): 1344- 1353.HuangH an, H ao Zh ifeng, W u Chungu o, et a.l The convergen cespeed of an t colony optim ization J. Ch in ese Journal of Compu tnuller, 2007, 30 ( 8): 1344- 1353.41null 6 :V E 1