收藏 分享(赏)

1 负载敏感泵自动调节原理.doc

上传人:fmgc7290 文档编号:5554781 上传时间:2019-03-07 格式:DOC 页数:7 大小:240KB
下载 相关 举报
1 负载敏感泵自动调节原理.doc_第1页
第1页 / 共7页
1 负载敏感泵自动调节原理.doc_第2页
第2页 / 共7页
1 负载敏感泵自动调节原理.doc_第3页
第3页 / 共7页
1 负载敏感泵自动调节原理.doc_第4页
第4页 / 共7页
1 负载敏感泵自动调节原理.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、1 负载敏感泵自动调节原理负载敏感泵控系统原理图如图 1 所示,PL 为负载需要的压力,通过流量控制阀 5 泵的流量QL 为负载需要的流量。当阀 5 的开度减小,表明负载需求流量减小,此时泵输出的流量大于负载所要求的流量,则阀 5 进出口压力降 LSp增大,推动敏感阀 1阀芯向右运动,使泵出口通过阀 1 左位与变量缸的大腔,由于变量缸大腔、小腔之间的面积差,推动变量斜盘角减小,使泵的流量减小,直到达到负荷所需求的流量为止。反之,阀 5 的开度增大,泵输出流量小于负载所要求的流量,则 LSp减小,阀 1 阀芯向左运动,变量缸大腔经过阀234XP1、负载敏感阀,2、恒压阀,3、变量缸大腔,4、变量

2、缸小腔,5、外接流量控制阀图 1 负载敏感泵控系统原理图1 右位通油箱,泵的斜盘角增大,流量增大。当负载保压时, ,这时负载敏感阀 1 无法开启,P S 推动恒压阀 2 阀芯向右运LSp动,油液通过阀 2 左位进入变量缸的大腔,使泵的流量减小到仅能维持系统的压力,斜盘角近零偏角,泵的功耗最小。当阀 5 关死,即负载停止工作,泵出口压力仅需为阀 1 弹簧设置压力,一般只有 14bar左右,流量接近为零。以上的分析说明:(1)该泵的输出压力和流量完全根据负载的要求变化。(2)保压时,泵的输出流量仅维持系统的压力。(3)空运转时,泵的流量在低压、零偏角下运转。2 负载敏感泵数学建模为了进一步深入的分

3、析研究负载敏感泵,首先必须要对负载敏感泵进行数学建模。从上部分的原理分析得知,负载敏感泵有三种状态,即一般工作状态、保压工作状态、和空运转状态,其中一般工作状态和空运转状态由负载敏感阀感应负载需求产生阀芯运动使泵流量变化来满足负载要求,保压工作状态由恒压阀感应负载敏感阀感应负载需求产生阀芯运动使泵流量变化来满足负载要求,系统模型需要分开建立。由于负载敏感阀和恒压阀结构相似运动过程也类似,本文下面将只建立负载敏感阀动作时的数学模型。(1)负载敏感阀的动态特性负载敏感阀芯运动的微分方程:vsvvLS xKdtMFAp20(1)式中 负载敏感阀弹簧质量加三分之一弹簧质量(kgfs 2/cm) ;vM

4、泵的输出压力(kgf/cm 2) ;Sp负载敏感阀的控制面积(cm 2) ;vA负载压力(kgf/cm 2) ;L负载敏感阀弹簧预调力(kgf);0F负载敏感阀芯位移,设向右为正(cm) ;vx负载敏感阀弹簧刚度(kgf/cm) 。sK对上式进行拉式变换并整理,得到负载敏感阀芯的传递函数: 1/)(21nvsvKExsW(2)式中 负载敏感阀的固有频率(s -1) ;vsnvMK其中 为压力偏差信号。vLSApsE)()((2)斜盘的动态方程负载敏感阀的流量方程:(3)pwxcQvd2式中 流量系数(cm 3s-1/( kgf/ cm2)) ;dc负载敏感阀开口面积梯度(cm) ;w工作介质密

5、度(kgfs 2/cm4) ;阀口前后的压降(kgf/cm 2) 。p故负载敏感阀的流量增益: 0)(1vSvdvq xpwxcQK或 (4)02vdqxpwc负载敏感阀的流量压力系数: 0)(21vSvdp xpcK或 (5)02vdpxc式中 阀口前后压差(kgf/cm 2) ; 变量活塞左移和右移时大腔压力(kgf/cm 2) 。1、则负载敏感阀的线性化流量方程,当负载需求流量减小时: 11pKxqvv反之,21pKxqvv斜盘运动的微分方程,偏角减小时: 20211dtxrJAps偏角增大时:(6)2021dtxrJApps式中 斜盘和变量活塞绕斜盘旋转中心的转动惯量(kgfcm s

6、2) ;J变量活塞中心至斜盘旋转中心的距离(cm) ;0r变量缸大腔的面积(cm 2) ;1变量缸弹簧腔的面积(cm 2) ;2A变量活塞的位移,设向左为正(cm) 。px流量连续性方程,斜盘偏角减小时: 101pcdtVtxAqpv偏角增大时:(7)2012ttpv式中 变量缸大腔的容积(cm 3) ;V有效体积弹性模量(kgf/cm 2) ;变量缸大腔的泄漏系数, (cm 3s-1/( kgf/ cm2)) 。0c联解式(3) , (4) , (5) , (6) , (7)得: 20132011)(2dtxrAJcKtVdtxppppvq(8)对上式进行拉式变换并整理,得到斜盘运动的传递函

7、数: 12/)(2 ssxsWnqvp(9)式中 斜盘的固有频率(s -1) ;VJrAn201阻尼系数(无因次) ;201rcKp(3)泵的流量和压力输出特性泵的流量增量方程:(10)pQpnxK式中 泵的转速(r/s) ;n泵的排量梯度(cm 2/r) 。QK对上式进行拉式变换并整理,得到泵输出流量的传递函数: nKsxQWp)()(3(11)泵的流量输出引起压力变化,用以下微分方程表示:(12)tSpLlSVdc对上式进行拉式变换并整理,得到泵输出压力的传递函数: TlSsIsW1/)(4(13)其中 为流量偏差信号。)()(sQsILp式中 泵输出端容腔体积(cm 3) ;tV惯性环节

8、的转折频率(s -1) ;tlTc变量缸弹簧腔的泄漏系数(cm 3s-1/( kgf/ cm2)) 。l由(2) 、 (9) 、 (11) 、 (13)得到负载敏感泵的传递函数方框图,如图 2 所示。根据方框图可求出负载敏感泵的开环传递函数: 1/122nvssK 12/221ssAKnnnq nKQ Tlsc1/1vALp LQ Sp图 2 负载敏感泵传递函数方框图(14)11)(2ssAcnKsWnnvTvlQq3 建立 AMESim 图形化模型AMESim 软件采用的建模方法类似于功率键合图法,要更先进一些。相似之处在于二者都采用图形方式来描述系统中各元件的相互关系,能够反映元件间的负载

9、效应及系统中功率流动情况,元件间均可反向传递图 3 负载敏感泵控系统 AMESim 模型数据。规定的变量一般都是具有物理意义的变量,都遵从因果关系;不同之处在于 AMESim更能直观地反映系统的工作原理。用 AMESim 建立的系统模型与系统工作原理图几乎一样,而且元件之间传递的数据个数没有限制,可以对更多的参数进行研究。它采用复合接口,即一个接口传递多个变量,简化了模型的规模,使得不同领域模块之间的物理连接。 1图 3 是在 AMESim 中建立的负载敏感泵控系统模型。此模型中用调节节流阀的开度来模拟负载流量变化,用比例溢流阀来模拟负载变化。4 仿真结果及分析由部分 2 建立的数学模型可知,

10、系统的开环增益系数为:(15)vlQqsAcnK1增加或减小系统开环增益会对系统的稳定性和响应的快速性产生重要的影响。当泵主体的结构已定时,则 不可改变,下面将验证负载敏感阀的机构参数对泵的动态lQcnKA、1特性的影响。以 Rexroth 公司的 A10VSO45DFR1 变量泵为例,设定模型参数。负载敏感阀弹簧设定压力为 20bar,设定比例溢流阀开启压力为 30bar,模拟负载压力。给节流阀一个方波信号,模拟负载流量需求增大和减小两个过程,得到泵输出流量响应曲线如图 4 所示。图 4 表明,泵的正阶跃响应时间(流量由小变大时响应曲线的峰值时间)约为 50ms,负阶跃响应时间(流量由大变小

11、时响应曲线的峰值时间)约为 40ms,与 Rexroth 提供的样本中的响应时间基本一致。说明了 AMESim 模型建立基本正确。下面将通过改变这个模型的参数以研究各参数与泵动态图 4 泵流量输出方波信号响应曲线特性的关系。(1)负载敏感阀弹簧刚度对系统响应的影响在 AMESim 的参数模式中,改变负载敏感阀弹簧刚度,得到图 5 所示的一组泵输出流量响应曲线。图中从 1 到 5,弹簧刚度依次是 10N/mm、 15N/mm、20N/mm、25N/ mm、30N/mm。由图可以看出,随着弹簧刚度的增大,系统的响应时间越来越短、超调量逐渐变小、振荡次数越来越少,但稳态误差也会随之增大,因此弹簧刚度

12、也不可选得过大。图 5 弹簧刚度对系统输出动态特性的影响(2)负载敏感阀阀芯作用面积对系统响应的影响不同负载敏感阀阀芯作用面积时系统的响应曲线如图 6 所示,图中从 1 到 5,阀芯直径依次是 6mm、8mm、10mm、12mm、14mm。由此图可知,随着阀芯直径的增加系统的响应时间越来越长,超调量随之增大。在阀芯直径为 6mm 时系统动态响应曲线比较理想,这符合国外大多数阀芯直径均为 6mm 的事实。图 6 阀芯作用面积对系统输出动态特性的影响(3)负载敏感阀阀芯开口形状对系统响应的影响不同负载敏感阀阀芯开口形状作用面积时系统的响应曲线如图 7 所示,曲线 1 是矩形槽开口阀芯的响应曲线,曲

13、线 2 是全周开口阀芯的响应曲线,阀芯的开口形状决定了阀的流量增益,由图 7 可以看出全周开口的阀芯使系统不稳定,可见选择适当的阀芯开口形状对系统动态响应的重要性。图 7 负载敏感阀阀芯开口形状对系统输出动态特性的影响(4)外加阻尼孔对系统响应的影响在 Rexroth 公司的样本中,我们可以看到在控制油路中加有旁路阻尼孔和回油阻尼孔,这些阻尼孔与控制阀通路组成了半桥结构,降低了系统增益,提高系统的稳定性。图 8 为有无阻尼孔时系统的响应曲线。曲线 1 为加有阻尼孔时系统响应曲线,曲线 2 为不加阻尼孔时系统的响应曲线,曲线验证了阻尼孔对系统稳定性和快速性的作用。但加图 8 阻尼孔对系统输出动态特性的影响有出油阻尼孔后会增加系统控制流量,使得泵输出流量的加大。5 结论推导了负载敏感泵的数学模型,建立了负载敏感泵直观有效的 AMESim 模型,对理解、使用、设计负载敏感泵有具有较大的参考价值。(1)负载敏感阀弹簧刚越大大,系统的响应越快、超调量越小、稳定性越好,但稳态误差也会越大。(2)阀芯直径越大系统的响应越慢、超调量越大。(3)阀芯开口形状对泵的动态性能影响很大,选择合适的阀芯开口形状很重要。(4)外加阻尼孔能有效的提高泵的快速性和稳定性,但控制流量会有所增加。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 通信信息 > 电子电气自动化

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报