1、,主讲教师:陈殿友,总课时:,128,第三十三讲,隐函数的导数,高等数学,一、隐函数的导数的概念,机动 目录 上页 下页 返回 结束,4 隐函数的导数,第二章,二、隐函数导数的求法,一、隐函数的导数的概念,若由方程,可确定 y 是 x 的函数 ,由,表示的函数 , 称为显函数 .,例如,可确定显函数,可确定 y 是 x 的函数 ,但此隐函数不能显化 .,函数为隐函数 .,则称此,隐函数求导方法:,两边对 x 求导,(含导数 的方程),机动 目录 上页 下页 返回 结束,例1. 求由方程,在 x = 0 处的导数,解: 方程两边对 x 求导,得,因 x = 0 时 y = 0 , 故,确定的隐函
2、数,机动 目录 上页 下页 返回 结束,二、隐函数导数的求法,例2. 求椭圆,在点,处的切线方程.,解: 椭圆方程两边对 x 求导,故切线方程为,即,机动 目录 上页 下页 返回 结束,例3. 求,的导数 .,解: 两边取对数 , 化为隐式,两边对 x 求导,机动 目录 上页 下页 返回 结束,1) 对幂指函数,可用对数求导法求导 :,说明:,注意:,机动 目录 上页 下页 返回 结束,2) 有些显函数用对数求导法求导很方便 .,例如,两边取对数,两边对 x 求导,机动 目录 上页 下页 返回 结束,例4 设,由方程,确定 ,解:,方程两边对 x 求导,得,再求导, 得,当,时,故由 得,再代入 得,求,机动 目录 上页 下页 返回 结束,内容小结,1. 隐函数求导法则,直接对方程两边求导,2. 对数求导法 :,适用于幂指函数及某些用连乘, 连除表示的函数,机动 目录 上页 下页 返回 结束,作业,P38 练习2.1,第五节 目录 上页 下页 返回 结束,求其反函数的导数 .,解:,方法1,方法2,等式两边同时对 求导,备用题,1. 设,机动 目录 上页 下页 返回 结束, 求,解:,2. 设,方程组两边同时对 t 求导, 得,机动 目录 上页 下页 返回 结束,