1、共 2 页 第 1 页 4. Consider an LTI system whose response to the signal in Figure 2 is the signal tx1illustrated in Figure 3. The response of the system to the input depicted in ty1 txFigure 4 is ( ).(a) 213tututtut(b) 3(c) 2ttttt(d) 13uuu5. Consider an LTI system whose input and unit impulse response ar
2、e given xnhnby , . 212xnn312hnThe output of this system is ( ).hxy(a) 6,3,01,4(b) 15223ynn(c) ,(d) 630145y3. Consider a discrete-time system with input and output related by xnyn, this system may be ( ).1ynx(a) Nonlinear, time-variant, not causal, stable(b) Linear, time-variant, not causal, unstable
3、 (c) Nonlinear, time-invariant, not causal, stable(d) Linear, time-variant, causal, unstable)(tx012tFigure 2102t2xt)(1ty3021tFigure 3 Figure 4共 2 页 第 2 页 学院 任课教师 班次 学号 选课号 姓名 密 封 线 内 答 题 无 效 6. The convolution integral may be ( ).1/2/1ytututt(a) 1223tutt(b) 2utttt(c) tttuu(d) 123utttt7. Let be a per
4、iodic signal with fundamental frequency and Fourier series xt 0coefficients . The Fourier series coefficients of is ( ).k 1dxt(a) (b) (c) (d) 0jkae0jkjae00jkjae00jkjae8. Consider an LTI system with unit impulse response illustrated in Figure 5, if the htinput is , the output ( ).dtxt 3/2ty(a) (b) (c) (d) 13209. The convolution integral may be ( ).2tyteu(a) (b) (c) (d) 2teu2te110. The input signal of an LTI system is , if the output 1nnxtt, the unit impulse response of the system may be ( ). cos57yttt(a) (b) 1in8si42httsi8i4httt(c) (d) 0tt1n22t102ttFigure 5