1、探索勾股定理,八年级数学(上册) 新世纪版,想一想,小明妈妈买回来一部29英寸(74厘米)的电视机.小明很高兴,但量了电视机的屏幕后,发现屏幕只有大约58厘米长和46厘米宽,他觉得一定是送货员搞错了.你同意他的想法吗?你能解释这是为什么吗?,(1)观察图1-1正方形A中含有 个小方格,即A的面积是个单位面积。,正方形B的面积是个单位面积。,正方形C的面积是个单位面积。,9,9,9,18,1,2,3,(2)(3),分割成若干个直角边为整数的三角形,(单位面积),返回,(单位面积),把C看成边长为6的正方形面积的一半,返回,(2)在图1-2中,正方形A,B,C中各含有多少个小方格?它们的面积各是多
2、少?,(3)你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?,SA+SB=SC,即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积,(1)观察图1-3、图1-4,并填写右表:,A的面积(单位面积),B的面积(单位面积),C的面积(单位面积),图1-3,图1-4,16,9,25,4,9,13,做一做,幻灯片 9,分割成若干个直角边为整数的三角形,(面积单位),幻灯片 7,(2)三个正方形A,B,C的面积之间有什么关系?,SA+SB=SC,即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积,幻灯片 7,(1)你能用三角形的边长表示正方形的面积吗?,(2)你能发现直角三
3、角形三边长度之间存在什么关系吗?与同伴进行交流。,(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度。(2)中的规律对这个三角形仍然成立吗?,议一议,勾股定理(gou-gu theorem),如果直角三角形两直角边分别为a、b,斜边为c,那么,即 直角三角形两直角边的平方和等于斜边的平方。,勾,股,弦,勾股世界我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角三角形,如果勾等于三,股等于四,那么弦就等于五。即“勾三、股四、弦五”。它被记载于我国古代著名的数学著作周髀算经中。在这本书中的另一处,还记载了勾股定理的一般形式。1945
4、年,人们在研究古巴比伦人遗留下的一块数学泥板时,惊讶地发现上面竟然刻有15组能构成直角三角形三边的数,其年代远在商高之后。相传二千多年前,希腊的毕达哥拉斯学派首先证明了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。,读一读,我国数学家华罗庚曾经建议,要探知其他星球上有没有“人”,我们可以发射下面的图形,如果他们是“文明人”,必定认识这种“语言”,足见勾股定理在数学中的地位.,小明的妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你能解释这是为什么吗?,售货员没搞错,想一想,荧屏对角线大约为74厘米,小结,说说这节课你有什么收获?,作业,一、P6 习题1.1 第1、2、3、4题,二、准备4张全等的直角三角形纸片,,再见,