1、教版使用说明与学法指导:用类比的方法探究出立方根的运算及表示方法,并能自我总结出平方根与立方根的异同.学习目标:1.了解立方根的概念,初步学会用根号表示一个数的立方根.2.知道立方与立方根互为逆运算,会用立方运算求某些数的立方根.3.用类比平方根的方法 学习立方根,以及开立方运算,并区分立方根与平方根的不同.学习重点:立方根的概念和求法.学习难点:立方根与平方根的求法.学习过程:【活动 一】温故知新问题一:小学我们学过制作一个正方体的木箱,已知边长为5m,求它的容积是多少.问 题二:要制作一个容积为27m的正方体包装箱,这种包装箱的边长是多少?设这种包装箱的边长为x,则x .那么你是否知道27
2、,我们可得x .小结:一般的,如果一个数的 等于a,那么这个数叫做a的 或 .这就是说,如果xa,那么x叫做a的立方根.在上面的问题中,由于327,27叫作3的 ,叫做的 .我们把求一个数的立方根的运算叫做 【活动二】新知应运,随堂演练请你根据立方根的意义填空:因为28,所以8的立方根是_.因为 1 25,所以125的立方根是_.因为 0 ,所以0的立方根是_.因为( )64,所以64的立方根是_.因为 ),所以的立方根是_.归纳立方根的性质:由上面的运算你会发现:正数的立方根是 数.负数的立方根是 数.0的立方根是 . 【活动三】运用类比平方根的表示方法,得出立方根的表示方法1. 知识回顾:
3、平方根的表示方法:若x a,那么数a的算术平方根用符号 来表示2类似的,如果一个数 ,那么的立方根用符号 来表示,读作 ,其中3是 ,是 2. 你一定会做:试判对错1 5没有立方根 .( )2 的立方根是 . ( )216613 0 没有立方根. ( )4 a 的三次方根是负数,a 一定是负数.( )【活动四】立方根与平方根的联系与 区别 联系:1 0的平方根与立方根都是 .2 平方根与立方根都是 结果.区别:1 定义 .2 被开方数的取值不同:负数 平方根,而负数有一个 的立方根. 3 方根的数目不同:正数有 个平方根,他 们互为 数.而正数只有一个 的立方根.4平方根中的根指数可以 而立方根中的根指数不可以 .【活动五】学以致用1. 0.064的立方根是 ; 的立方根是 4; 的立方根是 .32