1、2.3 数轴教学目的:(一)知识点目标:1.了解数轴的概念,如何画数轴。2.知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。(二)能力训练目标:1.从直观理性认识,从而建立数轴概念。2.通过数轴概念的学习,初步体会对应的思想、数形结合思想方法。3.会利用数轴解决有关问题。(三)情感与价值观要求:通过对数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性。教学重点:数轴的概念。教学难点:从直观认识到理性认识,从而建立数轴概念。教学方法:小组活动、师生探究。教具准备:弹簧秤、温度计等。教学过程:创设问题情境,引入新课活动
2、 1:1、教师演示用弹簧秤称物体质量,并说明弹簧秤的制作方法。2、观察温度计,再次体会数与形的对应关系。师通过观察比较,发现弹簧秤和温度计上反映了数与形的对应关系有何不同?生弹簧秤上的点对应的是 0 和正有理数,而温度计的点对应的既有正有理数和0,还有负有理数。活动 2:1、在一条东西方向的马路上,有一个汽车站,汽车站东 3 千米和 7.5 千米处各有一棵柳树和一棵杨树,汽车站西 3 千米和 4.8 千米处各有一棵槐树和一根电线杆,度画出表示这一问题的示意图。2、再次观察温度计,教科书图 1.2-1,找出它们的共同之处。师引导学生画图,组织学生在小组内讨论、探究,并找两名同学板演问题 1 提出
3、的问题。请同学思考:怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系?(方向、距离)讲授新课-认识数轴:1、学习数轴概念:一般地,在数学中,人们用画图的方式把数“直观化” ,通常用一条直线上的点表示数,这条直线叫数轴。教师讲解,使学生理解数轴的三要素:为了读、画方便,通常把直线画成水平或竖直的线来表示数轴,它满足三个要求:(1) 原点:在直线上任取一个点表示数 0,这个点叫做原点。(2) 正方向:通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3) 单位长度:选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示 1,2,从原点向左,用类似
4、的方法表示一 1,一2,(教科书图 1.2-3)例 1 画数轴。丰富数轴的内涵:分数或小数也可以用数轴上的点来表示。例如从原点向右 6.5 年单位长度的点表示小数 6.5,从原点向左 23个单位长度的点表示分数23(书上图 1.2-3)说明:给出数轴后,所有的有理数都可以用数轴上的点来表示。然后让学生画数轴,指出:(1) 数的三要素:原点、正方向、单位长度缺一不可。(2) 原点是“任取”一点,通常取图中适中的位置,如果所需表示的数都是正数,也可偏向左边。(3) 数轴的正方向也是可以任意取的,通常规定向右(或向上)为正方向。(4) 单位长度的大小要根据实际需要选取。例 2 在数轴上能否实际画出表示一千万分之一的点?这个点存在吗?引导学生认识到:数轴有三要素:原点、正方向、单位长度。如果我们规定一千万厘米画在纸上为 1 个单位长度(可能是 1 厘米) ,则表示一千万分之一这个数的点的位置应在原点右边,距原点 1 厘米处。2、引导学生归纳:一般地,设 a 是正数,则 a是负数。数轴上表示数 a的点在什么位置? a呢?复习巩固:练习:课本 P12 练习 1、2 课时小结:教师和同学一起进行回顾:什么是数轴?如何画数轴?如何在数轴上表示有理数?课后作业:课本 P 习题 1.2 的第 2 题。课后反思: