1、等腰三角形的性质我预学1 操作:把等腰三角形沿顶角的平分线对折后再复原,请你把发现写下来.根据轴对称图形的性质,解释图形现象:(1) 条件说明:已知 AB=AC, AD 是顶角 BAC 的角平分线.(2) 结论发现: ABD , 从而得到ABC=ACB , (称 ABC 和 ACB 是ABC 的底角)BD= , (称 AD 是 ABC 底边上的 线)ADB=ADC= .(称 AD 是 ABC 底边上的 线 )归纳:等腰三角形的两条 、两个 重合在一起,顶角平分线与 线、 线重合 在一起.2请你在阅读教材内容后完成以下两个小题:(1)等腰三角形的周长是 20cm,一边长是 8cm, 你认为其余两
2、边长度怎么计算? (2)等腰三角形的一个角是 700,你认为其余 两个角度该怎么计算? 我求助:预习后,你或许有些疑问,请写在下面的空白处:我梳理1.等腰三角形的底角只能是 角,不能是 角或 角 ,但顶角可以是 角或 角,也可以是 角.2.等腰直角三角形的两个底角相等且都等于 .3.等腰三角形三线合一性.等腰三角形的顶角的 、底边上的 和底边上的 互相重合.只要知道其中一个量,就可以得出其它两个量.(1) AB=AC , 1= 2 (2) AB=AC , AD BC (3) AB=AC , BD=CD 个性反思:通过本节课的学习,你一定有很多感想和收获,请写在下面的空白处:我达标1在 ABC
3、中, AB=AC,BD 是角平分线,如果 A= 40 o,那么 BDC = .2. 在 ABC 中,点 D 在 CB 上,且 AB=AD=CD,C =25 o,那么 BA C= . 3.下列说法正确的是( )A.等腰三角形的高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等思考:请你找找判断全等三角形的三个条件.AB CAB CD思考:这一边长是 8cm,它是底边长还是腰长?思考:这一角是 70 o,它是底角长还是顶角?思考:等腰三角形中边、角的条件往往需要分类思考.何时不用分类呢?ED CBAC.等腰三角形一边不可是另一边的两倍D.等腰三角形的两个底角相等4. 在 ABC 中, AB
4、=AC, A B= 47,求三角形的各个内角度数.5.如图,在等腰 ABC 中, AB=AC, D、 E 在底边 BC 上且 AD=AE,你能说明 BD 与 CE 相等吗?为什么?6.如图,等腰三角形两腰上的中线 BD,CE 相交于点 F,连结 AF,请你判断 AF 和 BC 的位置关系,并说明理由.我挑战7等腰三角形腰上的高线与底边的夹角等于( )A.顶角 B.顶角的两倍 C.顶角的一半 D.底角的一半8.如图,在 ABC 中, AB AC, BAD 20o,AD AE, 则 EDC = 9.如图 D 是 ABC 中 AB 边上的一点, E 是 CA 延长线上的 点,AB=AC,AE=AD, 请你用所学知识说明 DE 与 BC 的位置关系.知识链接:在等腰三角形中涉及等边、等角的说明通常可以借助全等来完成.ED CBA我登峰10如图,在 ABC 中 , AD 平分 BAC , AB+BD=AC,猜想 ABC 和 C 的关系,并说明理由等腰三角形的性质175 2105 3 D 4 C 5 A=40B=C=70 6 BD=CE 理由略 7 AF 垂直平分 BC 理由略 8 C 910 10 DEBC 11 ABC=2C 理由略小贴士:线段和差的问题通常可通过在长边上截取和短边上补长的方法构造全等三角形来解决,我们把这种方法称为截长补短法.