1、null 2010 M 11 45 null 9 ; W , , ,2010, 45(9 9 1 4 , V d O V 200m 8 “ b 9 $ M1 8 “ C X ? C 1200 B , t 8 “ | 25 M 3 1 “ S 3 5b , C G ,% M a 8 Z + 1 G s b L , Z $ 8 “ % B r Z E 6, 7 ,7 1 M o s M 8 ( . d / b M o s / o s u s M ,V 7 s M 8, 9 bM 8 / _ , M Y 8 H 10, 11bC (sweetness) M Y 8 B / b + M ,S B t
2、7 Z C 12 15 , S = 7 C M 1 b3 Y V o s aM 8 C 7 Z % , H C # M 8 M Y 8 r T ) b2null 深水的定义及其沉积单元1 l , Q b l G h r Z - G V B S b “ - l 500m u b V K “ / 7 4 bShanmugum16 a H V d O | ( 200mP ) bY i l Z T / 4b$ 8 “ V E M ,y N F 3 , 1 V # 8 + s E s 1 bLopez2 - T 4 b$ V / s , v 8 , l C s b$ 7 , ! ,/ 8 S K / ,
3、 , 8 n bImran 17 $ S K V H :$ 7 , ! ,V Z _ _ t 7 ,y N V _ t b q L M 1 , S K q 1 b _ , S K q 1 q h l y , , ! _ $ K , null 45 null 9 ; W :C # % 159null null t K b % g - , # 8“ Z v b 8 C u , B v C ,# sweetnessb L C v l V o 4 , B M v l 7 X 15bQ r bBahorich 26 4 M 8 Q M Z E bM 8 s B 9 , M | 8 M 1 “ 8 , A
4、 U Y V 2010 M null Y (m 1c)b4.2null Z + u = , A 8 ; W :C # % 161null nullnull null M 8 B V , y , a 8 a / b M 8 H , 8 s a a /+ H b u = , / M H A H ; # 2010 M null5null 结论 C # M , V :(1) $ # 8 “ V T . % b(2) % 8 ? Z t # U . S F ,2005,10( 6) :71 76 7 null g , , . W C a? Z t # S U . S F , 2007, 12( 6) :
5、 28 31 8 null u , k * , .o s / 7 . F 7 ? ,2001,28( 6) :53 55 9 null . , , .o s / % M . F ,2008,47( 3) :262 265 10 null f c ,b C , . M / # rT s . S Z ( ), 2003,17(3) :215 217 11 null v , , l . M / Z # . S / f , 2005, 24(2) :71 76 12 null Hart B S. Stratigraphically significant attributes.The Leading
6、Edge , 2008, 27( 3) : 320 32413 null Goff D. Estimating net:gross from data histograms:Examples from deepnullwater turbidites: http: www.searchanddiscovery. net/ documents/ abstracts/ 2004regional_ west _africa/abstracts/goff. htm. 2004 14 null Choo C K, M Rosenquist, E Rollett and et al. Detecnullt
7、ing hydrocarbon reservoir with Seabed LoggingTM indeepwater Sabah, M alaysia. SEG T echnical P ronullg ram Exp anded Abstracts, 2006, 25: 714 718 15 null Hart B S. Channel detection in 3nullD seismicdata usingsweetness. A AP G Bulletin, 2008, 92( 6) : 733 74216 null Shanmugam G. 50 years of the turb
8、idite paradigm( 1950s# 1990s): deepnullwater processes and faciesmodelsnulla critical perspective. Marine and PetroleumGeology , 2000, 17(1null2): 285 34217 null Imran J, Parker G, and Katopodes N. A numericalmodel of channel interception on submarine fans.J ournal of Geophysical Research, 103( C1)
9、: 1219123818 null Popescu I, Lericolais G, Panin N, and et al. LateQuaternary channel avulsions on the Danube deepnullseafan,Black Sea. Marine Geology, 2001, 179(1null2) , 2537 19 null Curray J R, Emmel F J, and Moore D G. The BengalFan: morphology, geometry, stratigraphy, historyand processes. Mari
10、ne and Petroleum Geology ,2003, 19( 10): 1191 122320 null Mccormack M D. Neural couputing geophysics. T heLeading Edge, 1991, 10( 1) : 11 1521 null Galloway W E. Siliciclastic slope and basenullofnullslopedepositional systems, component facies, stratigraphicarchitecture, and classification. AA PG B
11、ulletin,1998, 82( 4) : 569 59522 null Richards M, Bowman M, and Reading H G. Submanullrinenullfan systems %: Characterization and stratigraphicprediction. Marine and Petroleum Geology, 1998,15( 7) : 687 71723 null Posamentier H W and V Kolla. Seismic geomorpholnullogy and stratigraphy of depositiona
12、l elements in deepnullwater settings. Journal of Sedimentary Research,2003, 73( 3) : 367 38824 null Taner M T and R E Sheriff. Application of amplinulltude, frequency, and other attributes to stratigraphicand hydrocarbon exploration, in Payton C E, SeismicstratigraphynullApplications to hydrocarbon
13、exploranulltion. AA PG Memoir, 1977, 26: 301 32725 null Radovich B J and R B Oliveros. 3nullD sequence internullpretation of seismic instantaneous attributes from theGorgon field. The L eading E dge, 1998, 17(9):1286 129326 null Bahorich M and Farmer S. 3nullD Seismic Discontinuityfor Faults and Str
14、atigraphic Features: TheCoherenceCube. The Leading Edge , 1995, 14( 10): 1053 1058(本文编辑:张亚中)null 240null F o 2010 M null o 7? s V Y / d a Q T bf S null ) = ,1964 M 3 ; 1990 M 8 7 ? i V Y % # 8 T b i null = , 1981 M 3 ; 2007 M 8 ; W null 1985 M 3 ;C S F v ( ) V 3 , 1 V Y a 8 d # % T bo + null 1981 M
15、3 ; 2005 M 8 / T b + null ) = ,1969 M 3 ; 1990 M 8 7 ? V Y d # 8 T b V / null q ,1970 M 3 ; 1992 M 8 . null ) = ,1966 M 3 ; 1989 M 8 7 ? N V Y o / 5 T b null null ) = ;1992 M 8 7 ? s V Y / s # 8 T b null null = , 1976 M 3 ; 2003 M 8 7 ? V Y ) d T b + null = ,1972 M 3 ; 1996 M 8 / I VY I T bnull Vol.
16、 45null Supplement 1 Abstracts (null nullleum Exploration&Development, Lanzhou City,Gansu Province, 730000, ChinaPickup and application of the true stratal slice.Dong Jiannullhua1, FanTingnullen1, Gao Yunnullfeng1, FanPengnulljun1 and Zhang Huinulllai1. OGP, 2010,45(Supplement 1):150 153Seismic slic
17、e ( horizontal slice, stratigraphicslice and stratal slice) technique is a widely usedmeans in seismicinterpretation, however the timenullcrossing phenomenon was sometimes developedunder complicated geology conditions. Accordingto the predecessors understanding for the phenomnullenon, and based on t
18、he basic assumption on whichthe seismic events are the basic isochronous stranulltum unit and by strictly following the occurrencechanging trends of the seismic events the true stranulltal slices were acquired by applying automatictracking technique which is based on dip controlbody. Based on the sl
19、ices and by combining geonulllogical characteristics and seismic response characnullteristics, the accurate isochronous stratigraphicframework of the target layers were established,the subnulllayer correlation and classification insidethe reservoir, the vertical structure changing andlateral distrib
20、ution analysis were conducted, theexcellent results were achieved in the research.Key words: seismic slice, timenullcrossing, event, inullsochronous stratum unit, true stratal slice, isochnullronous stratigraphic framework1. Research Institute of CNOOC, Beijing City,100027, ChinaApplication of high
21、resolution seismic technique inrecognizing incised valley, an interpretation casestudy for Quantou Formation in Xinshugang area,Songliao Basin. Guo Xuenullbin1 and Li Zinullshun1.OGP,2010,45(Supplement 1):154 157The incision and deposition of the incised valnullley often cause unconformity contact w
22、ith the unnullderlying strata, forming a unique geometric shapeand filling characteristics. Based on the 3D seismicdata with wide frequency band and highnullresolunulltion, the incised valley of the Quantou Formationin Xingshugang area in the Northern Songliao Banullsin was recognized in this paper,
23、 after discussingthe geometrical structure and frequency amplitudecharacteristics of the seismic reflection from thetypical incised valley, the incised valley developnullment zonein theQuantou Formation was predictedthrough wellnullseismic correlation, 3D seismic fineinterpretation and 3D visualizat
24、ion analysis, provinullding foundation for determining sequenceboundaryand their properties. The study results showedthat the incised valley sediments are the clastic sednulliments at lownullstand and late period The channelsand reservoir inside the incised valley are relativenullly developed, and t
25、he unconformity surface of theincised valley is the favorable pathway for oil andgas migration, so the channel sands inside the innullcised valley are the main place for the migrationand accumulation of oil and gas.Key words: incised valley, high resolution seismicexploration, 3D seismic, unconformi
26、ty surface, renullflection characterization of seismic section1. Research Institute of Petroleum Exploration andDevelopment, Daqing Company Ltd. of Petrochinullna, Daqing City, Helongjiang Province, 163712,ChinaApplication of sweetness and its fusion attribute inthe research of Deepnullwater Reservo
27、ir. Liu Zengnullqin1, 2,Wang Yingnullmin1, 2, Bai Guangnullchen3, Gong Chengnulllin1, 2.OGP,2010,45(Supplement 1):158 162In the deepnullwater exploration all over theworld today, the research and prediction of thedeepnullwater reservoir attract much attention in theindustry. Integrated use of multi
28、seismicattributescould maximize the accuracy of the reservoir prenulldiction. Sweetness attribute is a new technique inwhich the 3D seismicdata wereused to identify thesand bodies. Sweetness is the ratio between the renullflection strength and RMS frequency, by using thesweetness attribute the isola
29、ted sand bodies can beeffectively predicted in the deep sea sediment envinullronment. It is founded out in the studies that byintegrated with seismic facies waveform classificanulltion and the coherency technique, sweetness can beused to predict sediment type and distributioncharacteristics of the s
30、andbodies, the fusion attribnullute of the sweetness and thecoherency can be usedto determine the lithology typeand the distributionrange.Key words: sweetness, fusion attribute, coherence,waveform classification, deepnullwater reservoir1. College of GeonullResource and Information, ChinaUniversity o
31、f Petroleum, Beijing City, 102249,China2. State Key Lab of Oil&Gas Resources and Prosnullpecting, China University of Petroleum, BeijingCity, 102249, China3. Beijing Oil Branch of Sinopec, Beijing City,100128, ChinaAnalysis of major control factors of Yingcheng Fornullmation Volcanic reservoir formation. Xiao Yongnulljun1, Liu Zongnullquan1, Wang Denullxi2 and Xu Younullde1. OGP,2010,45(Supplement 1):163 166The volcanic reservoir in Chaganhua area hassome excellent characteristics, such as large renull