收藏 分享(赏)

【清华运筹学1课件】OR_MP_LP_Simplex_Part2a_628508420.pdf

上传人:weiwoduzun 文档编号:5398867 上传时间:2019-02-28 格式:PDF 页数:52 大小:332.92KB
下载 相关 举报
【清华运筹学1课件】OR_MP_LP_Simplex_Part2a_628508420.pdf_第1页
第1页 / 共52页
【清华运筹学1课件】OR_MP_LP_Simplex_Part2a_628508420.pdf_第2页
第2页 / 共52页
【清华运筹学1课件】OR_MP_LP_Simplex_Part2a_628508420.pdf_第3页
第3页 / 共52页
【清华运筹学1课件】OR_MP_LP_Simplex_Part2a_628508420.pdf_第4页
第4页 / 共52页
【清华运筹学1课件】OR_MP_LP_Simplex_Part2a_628508420.pdf_第5页
第5页 / 共52页
点击查看更多>>
资源描述

1、2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 1Operations Research IThe Simplex Algorithm: Part Two黄红选清华大学工业工程系电话:010-62795308Email: 2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 2Context Degeneracy and the Convergence of the Simplex Al

2、gorithm The Big M Method The Two-Phase Simplex Method Variables That are Unrestricted in Sign2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 3s4=551000010016x1=4400.5000.250.7510000s4-2-430s30.5-1-5x3s2=4s1=16z=240BV8Ratio410-1001601000240001501rhss2s1x2x1zz-value for n

3、ew bfs=z-value of current bfs minus(value of entering variable in new bfs)* (coefficient of entering variable in row 0 of current bfs)3.9 Degeneracy and the ConvergenceFOR Maximization Problem:2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 4s4=5510000100x1=2201.5-0.500

4、1.2510000s4-4-810s3100x3x3=8s1=24z=280BV Ratio820-2002421-200280100501rhss2s1x2x1z3.9 Degeneracy and the Convergence2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 5 (value of entering variable in new bfs)0,(z-value for new bfs)(z-value for current bfs) (value of enteri

5、ng variable in new bfs)=0,(z-value for new bfs)=(z-value for current bfs)z-value for new bfs=z-value of current bfs (value of entering variable in new bfs)* (coefficient of entering variable in row 0 of current bfs)Change of z-values: max problem2010-4-14H.-X. HuangDepartment of Industrial Engineeri

6、ng, Tsinghua University 6Nondegenerate 1mg of vitamin C. Each ounce of orange juice: 0.25oz of sugar, 3mg of vitamin C. The cost of producing orange soda is 2c/oz, and the cost of orange juice is 3c/oz. Orange-flavored soft drink: Each bottle of soft drink has 10oz and must contain at least 20mg of

7、vitamin C and at most 4oz of sugar.2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 16Decision Variables X1: the production (ounces) of orange soda X2: the production (ounces) of orange juice2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 17

8、How to solve the following LP?0,10vitamin,203sugar,4412132min2121212121=+=xxxxxxxxtsxxz0,102034412132min11212122112121=+=+=+=esxxxxexxsxxtsxxz100011020-10310s1=44011/41/20z=0000-3-21ratioBvrhse2s1x2x1znull?null?2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 18Question:

9、 How to find an initial bfs?Add artificial variables! BUT there is no guarantee that the optimal solution to the latter formulation will be the same as the former one.0,102034412132min321121321222112121=+=+=+=aaesxxaxxaexxsxxtsxxz2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua Uni

10、versity 19Make sure that all artificial vars are 0 Modifying the objective function Note that it sometimes happens that in solving the above LP, some of the artificial vars may assume positive values in the optimal solution. - infeasible0,102034412132min32112132122211213221=+=+=+=aaesxxaxxaexxsxxtsM

11、aMaxxz2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 20Flow Chart of Big M methodModify the constraints = rhs of each constraint is nonnegativeFor = or = constraints, add artificial variablesConvert to standard form, add slack or excess variablesLet M denote a very lar

12、ge positive numberMax Problem: - MaMin Problem: + MaEliminate artificial variables from row 0 =WHY?Simplex algorithmCanonical form2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 21CriteriaOptimal criterion:In the optimal solution, all artificial variables = 0Infeasible

13、criterion: At least one artificial variable is positive in the optimal solution, ORThe final tableau indicates that the LP is unbounded and at least one artificial variable is positive.Unbounded criterion:The final tableau indicates that LP is unbounded and all artificial variables in this tableau e

14、quals zero2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 22Example-step130,102034412132min2121212121=+=xxxxxxxxtsxxz0,102034412132min321121321222112121=+=+=+=aaesxxaxxaexxsxxtsxxz0,102034412132min11212122112121=+=+=+=esxxxxexxsxxtsxxz2010-4-14H.-X. HuangDepartment of I

15、ndustrial Engineering, Tsinghua University 23Example-step45322132min MaMaxxz +=10100011000-Ma310-Ma220-10310s1=44011/41/20000-3-21ratioBvrhse2s1x2x1z0,1020344121213212221121=+=+=+xxaxxaexxsxxtsIt is not a initial tableau which can be used !null2010-4-14H.-X. HuangDepartment of Industrial Engineering

16、, Tsinghua University 24Example-step 510a3=10101000110000a3100a220/3*a2=2020-1031016s1=44011/41/20z=30M30M-M0-3 +4M-2 +2M1ratioBvrhse2s1x2x1zIdentity matrix2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 25Example-step 55*a3=10/310/31-1/31/3002/30000a31/3-1/121-4/3Ma220

17、x2=20/320/3-1/3011/3028/5s1= 7/37/31/12105/120z= 20+10/3M20+10/3M-1 +1/3M00-1 +2/3M1ratioBvrhse2s1x2x1z2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 26The final tableaux1=553/2-1/21/20010-1/2-5/83/2-Ma31/21/81/2-Ma2x2=55-1/20100s1= 1/41/4-1/81000z=2525-1/20001ratioBvr

18、hse2s1x2x1z2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 27How to Spot an Infeasible LP?If any artificial variable is positive in the optimal Big M tableau, the original LP has no feasible solution.322132min MaMaxxz +=0,1036344121213212221121=+=+=+xxaxxaexxsxxts2010-4

19、-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 28Example-step 510*a3=10101000110000a3100a212a2=3636-1031016s1=44011/41/20z=46M46M-M0-3 +4M-2 +2M1ratioBvrhse2s1x2x1zIdentity matrix2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 29Example-step 5x2

20、=61010001100-1/43-4Ma3100a2a2=106-100-20s1= 3/23/20101/40z= 30+6M30+6M-M001-2M1Bvrhse2s1x2x1z2010-4-14H.-X. HuangDepartment of Industrial Engineering, Tsinghua University 30Disadvantages of Big M method How to determine the value of Big M ? M is chosen to be at least 100 times larger than the largest coefficient in the original objective function. Such large numbers can cause roundoff errors and other computational difficulties. Return

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 职业教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报