收藏 分享(赏)

2018年河北省鸡泽县第一中学高三10月月考数学(文)试题.doc

上传人:cjc2202537 文档编号:5288532 上传时间:2019-02-18 格式:DOC 页数:13 大小:1.83MB
下载 相关 举报
2018年河北省鸡泽县第一中学高三10月月考数学(文)试题.doc_第1页
第1页 / 共13页
2018年河北省鸡泽县第一中学高三10月月考数学(文)试题.doc_第2页
第2页 / 共13页
2018年河北省鸡泽县第一中学高三10月月考数学(文)试题.doc_第3页
第3页 / 共13页
2018年河北省鸡泽县第一中学高三10月月考数学(文)试题.doc_第4页
第4页 / 共13页
2018年河北省鸡泽县第一中学高三10月月考数学(文)试题.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、第页 12018 届河北省鸡泽县第一中学高三 10 月月考数学(文)试题(解析版)1.本试卷分第卷(选择题)和第卷(非选择题)两部分.试卷满分为 150 分,考试时间120 分钟.第卷(选择题)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合 A=x|y= ,集合 B=x|x2,AB=( )A. 0,3 B. 2,3 C. 2,+) D. 3,+)【答案】B【解析】 ,故选 B.A=x|x3AB=x|2x32. 在复平面内,复数 对应的点的坐标是( )A. (1,1) B. (1,1) C. (1,1) D. (

2、1,1)【答案】D【解析】 ,其对应点的坐标为 ,故选 D.2i1i=1+i (1,1)3. 已知平面向量 , 的夹角为 ,且 |=1, |,则| ( )a3 |a|=1 |b|=1 |a-2b|=A. 1 B. 2 C. D. 332【答案】C4. 已知命题 ,命题 q:xR,ax2+ax+10,则 p 成立是 q 成立的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A【解析】 不能推出 ,故 是 的充分不必要条件,故选 A.p:00,x(1,0)f(x)b0)的左、右焦点分别是 F1、F2,离心率为 ,过右焦点 F2 的直线 l 与椭圆

3、C 相交于 A、B 两点,F1AB 的周长为 8.(1)求椭圆 C 的方程;(2)求F1AB 面积的最大值【答案】 (1) y21;(2)2.【解析】试题分析:(1)由 F1AB 的周长可得 的值,再由离心率的值可得 ,由 的关系可得 的值,c a,b,c b由此可得椭圆的方程;(2)可设 的坐标及直线 的方程,则 的面积可转化为求 , 联立椭A,B AB F1AB |y1y2|圆与直线的方程可得 ,由基本不等式即可得 的面积的最大值.|y1y2| F1AB解:(1) F1AB 的周长为 8,4 a8, a2,第页 10又椭圆 C 的离心率 e , c , b2 a2 c21.椭圆 C 的方程

4、为 y21.(2)由题设知,直线 l 不能与 x 轴重合,故可设直线 l 的方程为 x my (mR)由 ,得( m24) y22 my10.设 A(x1, y1)、 B(x2, y2),则 y1 y2 , y1y2 ,| y1 y2| . F1AB 的面积 S |F1F2|y1 y2| .令 t ,则 S .43t+3t4323=2当且仅当 t , t ,即 m 时,等号成立当 m 时,S 取得最大值 2.点睛:求椭圆标准方程的方法(1)定义法:根据椭圆定义,确定 的值,再结合焦点位置,直接写出椭圆方程a2,b2(2)待定系数法:根据椭圆焦点是在 轴还是 轴上,设出相应形式的标准方程,然后根

5、据条x y件确定关于 的方程组,解出 ,从而写出椭圆的标准方程a,b,c a2,b221. (12 分)已知函数 g(x)=x2(2a+1)x+alnx(1) 当 时, 求函数 的单调增区间;a=1 g(x)(2) 求函数 在区间 上的最小值g(x) 1,e(3)在(1)的条件下,设 = + ,求证: ( ) ,参考数据: .第页 11【答案】 (1) ;(2) ;(3)证明见解析.(0,12),(1,+) g(x)=2a,a1a2a+alna,10 g(x) g(x)=(2x1)(xa)x =0 a讨论,能求出 的最小值;(3)令 ,从而得到g(x) h(x)=lnx14(x21)x2,+)

6、h(x)=2x22x2(1x11x+1),kf(k)=lnk(1)当 时, ,a=1 g(x)=x2-3x+lnx g(x)=2x2-3x+1x 0或 。函数 的单调增区间为 x1 x0,g(x)g(x)min=g(a)=-a2-a+alna当 , 单调递减, x1,e,g(x)0,g(x) g(x)min=g(e)=e2-(2a+1)e+ag(x)= -2a,a1-a2-a+alna,10(f(x)0)(2)已知函数的单调性,求参数的取值范围,应用条件 恒成立,解出参数的取f(x)0(f(x)0),x(a,b)第页 12值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是 不恒等于

7、的参数的范围f(x) 0(二)选考题(共 10 分.请考生在第 22、23 题中任选一题作答.如果多做,则按所做的第一题计分)22. 选修 4-4:坐标系与参数方程(10 分)已知过点 P(a,0)的直线 l 的参数方程是 (t 为参数) ,以平面直角坐标系的原点为极点,x 轴x=32t+ay=12t 的正半轴为极轴,建立极坐标系,曲线 C 的极坐标方程为 =4cos()求直线 l 的普通方程和曲线 C 的直角坐标方程;()若直线 l 与曲线 C 交于 A,B 两点,试问是否存在实数 a,使得| |=6 且 | |=4?若存在,PA+PB AB求出实数 a 的值;若不存在,说明理由【答案】 (

8、1) ;x 2+y24x=0;(2)a=1 或 a=5;理由见解析.【解析】试题分析:(1)消参可得的普通方程, 两边乘 ,利用极坐标与直角坐标的互化公式可=4cos 得其直角坐标方程;(2)由题中条件可判断过圆心,得 与 矛盾,得结论。a=2 |PA+PB|=2(1)消由 x=322y+a直线的普通方程为 x- 3y-a=0由 =4cos2=4cos曲线 的直角坐标方程为C x2+y2-4x=0(2) ,而圆的直径为 4,|AB|=4故直线必过圆心 ,此时 与 矛盾(2,0) a=2 |PA+PB|=6实数 不存在. a23. 选修 4-5:不等式选讲(10 分)第页 13已知不等式|xa|

9、+|2x3| (1)已知 a=2,求不等式的解集;(2)已知不等式的解集为 R,求 a 的范围【答案】 (1) 或 x1;(2) (3,1).【解析】试题分析:(1)将 代入不等式,零点分段去绝对值,解不等式即可;(2)根据绝对值的,几何a=2意义, 的最小值为 或 ,对其进行讨论,即可得结论.f(x)=|xa|+|2x3| f(a) f(32)解:(1)当 a=2 时,可得|x2|+|2x3|2,当 x2 时,3x52,得 ,当 时,3x+52,得 x1,当 时,x12,得:x,综上所述,不等式解集为 或 x1(2)f(x)=|xa|+|2x3|的最小值为 f(a)或 ,即 , ,令 ,则 或 ,可得3a1 或 a,综上可得,a 的取值范围是(3,1)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报