1、3.1.2 空间向量的数乘运算一、选择题1已知空间四边形 ABCD,连接 AC、BD ,设 M、G 分别是 BC、CD 的中点,则 等于 MG AB AD ( )A. B3 C3 D232DB MG GM MG 2设 M 是ABC 的重心,记 a, b, c ,则 等于 ( )BC CA AB AM A. B. C. D.b c2 c b2 b c3 c b33已知向量 a、b,且 a2b, 5a6b, 7a2b,则一定共线的三点是( )AB BC CD AA、B 、D B A、B、C CB、C、D DA、C、D4下列条件,能说明空间不重合的 A、B、C 三点共线的是 ( )A. B. AB
2、BC AC AB BC AC C. D| | |AB BC AB BC 5在下列等式中,使点 M 与点 A,B,C 一定共面的是 ( )A. OM 25OA 15OB 15OC B. OM 15OA 13OB 12OC C. 0MA MB MC D. 0OM OA OB OC 6如图所示,空间四边形 OABC 中, a, b, c,点 M 在 OA 上,且OA OB OC OM2 MA,N 为 BC 中点,则 等于 MN ( )A. a b c12 23 12B a b c23 12 12C. a b c12 12 12D a b c23 23 12二、填空题7已知 A,B ,C 三点不共线,
3、O 是平面 ABC 外任一点,若由 确定OP 15OA 23OB OC 的一点 P 与 A,B ,C 三点共面,则 _.8在四面体 OABC 中, a, b, c,D 为 BC 的中点,E 为 AD 的中点,则OA OB OC _(用 a,b,c 表示)OE 9.如图,正方体 ABCDA1B1C1D1 中, ,若 x y( ),则A1E 14A1C1 AE AA1 AB AD x_,y _.三、解答题10设 e1,e 2是平面上不共线的向量,已知 2e 1ke 2, e 13e 2, 2e 1e 2,若AB CB CD A,B ,D 三点共线,试求实数 k 的值11.已知 A、B 、C 三点不
4、共线,对平面 ABC 外一点 O,有 .求证:OP 25OA 15OB 25OC P、A 、B、C 四点共面12已知 A、B、C 三点不共线,对平面 ABC 外一点 O,当 2 时,点 P 是OP OA OB OC 否与 A、B、C 共面?四、探究与拓展13.如图所示,在平行六面体 ABCDA1B1C1D1 中,O 是 B1D1 的中点,求证:B 1C平面 ODC1.答案1B 2.D 3.A 4.C 5.C 6.B7. 8. a b c 9.1 215 12 14 14 1410811证明 ,25 15 25 (1 15 25) 15 25 () ()15 25 ,15 25 ,15 25 ,
5、15 25向量、 、共面,而线段 AP、AB、AC 有公共点,P、A、B、C 四点共面12A、B 、C 、P 四点不共面13证明 设a,b,c,四边形 B1BCC1 为平行四边形,ca,又 O 是 B1D1 的中点, (ab) ,12 (ab),12b (ab)12 (ba) 12D 1D 綊 C1C,所以c, (ba)c .12若存在实数 x、y ,使x y (x,yR )成立,则cax 12b a cy 12a b (xy) a (xy)bx c.12 12a、b、c 不共线,Error!得Error!,、 、是共面向量,B 1C 不在 OD、OC 1 所确定的平面 ODC1 内,B 1C平面 ODC1.高|考 试:题库