1、第一章 算法初步1.3 算法案例,3 5,9 15,问题1:在小学,我们已经学过求最大公约数的知识,你能求出18与30的最大公约数吗?,创设情景,揭示课题,18 30,2,3,18和30的最大公约数是23=6.,先用两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来.,案例1 辗转相除法与更相减损术,创设情景,揭示课题,问题2:我们都是利用找公约数的方法来求 最大公约数,如果两个数比较大而且根据我 们的观察又不能得到一些公约数,我们又应 该怎样求它们的最大公约数?比如求8251与 6105的最大公约数?,研探新知,1.辗转相除法:,例1 求两个正数8251和61
2、05的最大公约数。,分析:8251与6105两数都比较大,而且没有明显的公约数,如能把它们都变小一点,根据已有的知识即可求出最大公约数.,解:8251610512146,显然8251与6105的最大公约数也必是2146的约数,同样6105与2146的公约数也必是8251的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数。,1.辗转相除法:,例1 求两个正数8251和6105的最大公约数。,解:8251610512146;,6105214621813; 214618131333; 18133335148; 333148237; 1483740.,则37为8251与6105的最大公约数。,以上我们求最大公约数的方法就是辗转相除法。也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的。,