压缩包目录
-
全部
- 文数答案.pdf--点击预览
- 河南省豫南九校2018届高三下学期第一次联考试题文科数学.doc--点击预览
文件预览区
|
|
资源描述
g1594g3128g3316g3888g271g3635g272g1013g2217g1235g803 g13071g3994g271g16437g3994g272 豫南九校2017—2018学年下学期第一次联考 高三数学(文)参考答案 g1078g573g17983g6431g20174g3g3g3g31g2525DCBBC 6g25210BACBB 11g25212AD 1g714D g463g16403g7616g464g3344g1130 1{ | }2A x x= ≥ g712 { | 1 1}B x x= − ≤ ≤ g712g6256g1301g6256g1301A B∩ = 1 12x x ≤ ≤ g714 2g714C g463g16403g7616g464 1 3 1 1z i= + − = g714g708 3 1 1Z i= − − = g709 3g714B g463g16403g7616g464122 2 2 27π π 2 1log cos log cos log log 24 4 2 2− = = = =− g296 g712g7029g17977Bg714 4g714B g463g16403g7616g464g6347g10393g13551 22x py= ( 0)p g11444g7735g2038g7145g12347g1130 2 12y xp= g712g7029g17977Bg714 5g714C g463g16403g7616g464g1211g1318A B∩ g1086g1211g1318A B∪ g7263g4649g12539g1211g1318g712 3 1( ) 1 ( ) 1 4 4P A B P A B= − = − =∩ ∪ g712g17977Cg714 6g714B g463g16403g7616g464g2093g7072 πsin 4y x = − g13567g1384g19375g2568g6546g5575 1 πsin 2 4y x = − g712g1981g1420g5283g12331g2568g6546g55751 π πsin2 6 4y x = − − 1 πsin2 3x = − g712g7029g17977Bg714 7g714 A g463g16403g7616g464g1485g20168g5951g2591g11797g1081g7969g19285D ABD′− g2467g1130g16917g2064g1413g1411g708g4018g3374g709g712g7235g5575g16917g2064g1413g1411g11444g16024g19858g12319g1130 2 1+ g714 8g714C g463g16403g7616g464g16403g8965g1072g726 0, 0, 1, 1i S x y= = = = g5424g4091g6295g15996g712g10086g2622 11, 1 1, 2, 2i S x y= = + = = ⋅⋅⋅ 1 1 1 1 15, (1 2 4 8 16) (1 ) 33, 32,2 4 8 16 32i S x y= = + + + + + + + + + 0g712 ( )xf x 1′ g712g2591g5575g726 ( ) (ln )11g x xx′ = g712g1300g′(x)=f (x)-lnx g1278g13884g′(x)0 ∴g (x)g1130g3790g2093g7072 ∴f (2)-ln2f (1)-ln1g712g2467f (2)- f (1)ln2g712g7029g17977A 12g714D g463g16403g7616g464g1485g20168g5951g712 2 12 14,2r − = g16403g5575 2r= g712g3344g1130g11556g13551 : (1 2 ) ( 1) 3 0l m x m y m′ + + − − = g712g7029 (11)P ,;g16878MNg11444g1117g9961g1130 ( , )Q x y g712g21212 2 2OM OQ MQ= + 2 2OQ PQ= + , g2467 2 2 2 24 ( 1) ( 1)x y x y= + + − + − g712g2374g12720g2591g55752 21 1 3( ) ( )2 2 2x y− + − = g712g6256g1301g9961Qg11444g17816g17961g7263g1301 1 1( , )2 2 g1130g3382g5619g712 62 g1130g2426g5556g11444g3382g712g6256g1301PQg11444g2566g1644g14643g3364g1130 6 2 6 2,2 2 − + g712g6256g1301MN g11444g2566g1644g14643g3364g1130 6 2, 6 2 − + g714 g1218g573g3745g12464g20174g313g7141 14g71412 15g7148 16g714①②③ 13g714g463g16403g7616g464g11105g5154g11797g7569g1318g712g2591g15996g3599g2410g3599g1130g1081g16386g5522g714g1958g1117g1081g1114g20134g9961g2102g2139g1130 5 4(1,0),(1,2),( , )3 3 g712g6330g1081g1114g9961g2102g2139g1299g1941z x y= − g7920g20668g5575g726g5507 1, 0x y= = g7206g712zg2566g5575g7472g3927g16441g714 g1594g3128g3316g3888g271g3635g272g1013g2217g1235g803 g13073g3994g271g16437g3994g272 14g714g463g16403g7616g464g11105 ( ) 3a b a− =−g712g2591g5575 2 3 1a b a a b⋅ − =− ⇒ ⋅ =g712g6256g1301g2625g18431b g3416a g7145g2625g1082g11444g6341g5537g1130 12a ba⋅ = g714 15g714g463g16403g7616g464g3382g5619g1130(2, 1)− g712g2121g1299g1941g11556g13551g5575g7262 2 2a b+ = g712g2467 1a b+ = g712g2121g7481 1 1 1 2( ) 4 2( ) 4 2 2 8a b a b b a b aa b ab a b a b a b+ ++ + = + = + + ≥ + × ⋅ = g708g5507g1092g1269g550712a b= = g7206g2566g12665g2599g709 16g714g463g16403g7616g464g311 g712 g712g5507g1092g1269g5507 g7206g2566g12665g2599g714g7029“ ”g7263“ ”g11444g1909g2102g1085g5621g16305g7569g1318g714 g3 g312g2591g1134g1467 1.1, 1.21a x= = g712g1238g2591g7072g5522g13571g2616g11797g5621g4488g3416 xaxa ax log,0,1 使得 g6208g12539g714 g3 g313g11105g20168g5951 3( ) 4 2( 1) ( 3)f x x a x a′ = − − + − g7263g3959g2093g7072 3 0 3a a⇒ − = ⇒ = g714 g3 g314g6457g4554g1145g7235g5575g17816g17961g7145g12347 2 4y x= g712g1398g1085g5316g5677g11157g4660g13551 0( 0)y x= ≤ g714g13612g1082g17977g311g312g313g714 g1087g573g16409g12682g20174g317g714 g16403g726 g7081g709g16878g12665g8708g7072g2119 }{ na g11444g1948g8708g1130 )0( qq g712 g11105g20168g5951g712g557534 121 1 1 1813( )a aqaq aq a aq = = + = +…………………2g2102 g16403g5575 133aq= = …………………4g2102 g6256g1301 11 3n nna aq −= = ………………5g2102 g7082g709g11105g708Ig709g5575 2 13log 3 2 1nnb n−= = − g712 ………………6g2102 21( ) [1 (2 1)]2 2nnn b b n nS n+ + −= = = g714 ………………8g2102 g295 21 1 1 14 1 2 2 1 2 1nc n n n = = − − − + , …………………10g2102 g295 1 1 1 1 1 112 3 3 5 2 1 2 1 2 1n nT n n n = − + − + + − = − + + ⋯ ……12g2102 18g714g16403g726 g7081g709g296g5283g19858PAB⊥g5283g19858ABCDg712g5283g19858PAB∩g5283g19858 ABCD AB= g712 AD⊂g5283g19858ABCDg712g1092AD AB⊥ g712 g295AD⊥g5283g19858PABg714 g2552g296PB⊂g5283g19858PABg712g295PB AD⊥ g714 g2552g296PB PA⊥ g712 g1594g3128g3316g3888g271g3635g272g1013g2217g1235g803 g13074g3994g271g16437g3994g272 PA AD A=∩ g712 ,PA PD⊂g5283g19858PADg712 g295PB⊥g5283g19858PADg714…………………5g2102 g7082g709g2566ABg1117g9961Eg712g17934g6613PEg714 g296PA PB= g712g295PE AB⊥ g714 g2552g296PE⊂g5283g19858PABg712g5283g19858PAB⊥g5283g19858ABCDg712 g5283g19858PAB∩g5283g19858ABCD AB= g712 g295PE⊥g5283g19858ABCDg714 g295PEg1130g1081g7969g19285P BCD− g11444g20744g712g1092 1 12PE AB= = g714 g2552g296CD ABg288 g712AD CD⊥ g712g295 1 22BCDS CD AD AD∆ = ⋅ = g714 g295 1 2 23 3C PBD P BCD BCDV V S PE AD− − ∆= = ⋅ ⋅ = = g712g5575 3AD= g714 cos 45 2PA AB= ⋅ °= g714 g2552g296AD⊥g5283g19858PABg1092PA⊂g5283g19858PABg712g295PA AD⊥ g714 g295 1 3 22 2PADS PA AD∆ = ⋅ = g714…………………12g2102 19g714g16403g726 g7081g709g11105g20168g712 3.56t 1+2+3+4+5+6= = g712 76y 6.6+6.7+7+7.1+7.2+7.4= = g712 61( )( )i iit t y y=− −∑ ( 2.5) ( 0.4) ( 1.5) ( 0.3) 0 0.5 0.1 1.5 0.2 2.5 0.4 2.8= − × − + − × − + + × + × + × = g712 621( )iit t=−∑ 2 2 2 2 2 2( 2.5) ( 1.5) ( 0.5) 0.5 1.5 2.5 17.5= − + − + − + + + = g714 g6256g1301 2.8 0.1617.5b= =ɵ g712g2552ɵa y bt= −ɵ g712g5575ɵ 7 0.16 3.5 6.44a= − × = g712 g6256g1301yg1955g1214tg11444g13551g5719g3342g5506g7145g12347g1130ɵ 0.16 6.44y t= + g714 8g2102 g7082g709g11105g7081g709g11797ɵ 0.16 6.44y t= + g712 g5507 7t= g7206g712ɵ 0.16 7 6.44 7.56y= × + = g712 g2467g16917g3424g24102018g5284g16917g1996g1239g2801g11444g1239g18431g1376g16849g1644g11307g71456g1079g2648g714 12g2102 20g714g16403: g7081g709g16878 ( )1 ,0F c- g712 ( )2 ,0F c g712g21212,bP c a g712 g296 62OP = g712g29542232bca+ = g714g311…………………2g2102 g296 22e = g712g295 22ca = g714g312 g13956g12539g311g312g5575g712 1c = g712 1b = g712 2a = g714…………………3g2102 g1594g3128g3316g3888g271g3635g272g1013g2217g1235g803 g13075g3994g271g16437g3994g272 g295g8029g3382g7145g12347g113022 12x y+ = g714…………………4g2102 g7082g709g7278g10086g11556g13551lg7116g10679g4488g3416g712g16878g11556g13551lg7145g12347g1130g726 2y kx= + g712Ag9961g3456g7735g1130( )1 1,x y g712Bg9961g3456g7735g1130( )2 2,x y g714…………………5g2102 g13956g12539g7145g12347g13556 2 2212y kxx y= + + =g712g5575( )2 21 2 8 6 0k x kx+ + + = g712…………………7g2102 g1300 0g16564 g5575g712 2 32k g712 g295 1 2 281 2kx x k+ = - + g712 1 2 261 2xx k= + g712…………………8g2102 g11105g5462g19375g1948g5439g5575g712 ( ) ( ) ( ) ( )2 2 221 2 1 2 1 2 1 21 4AB x x y y k x x xx = − + − = + + − ( ) ( ) ( )2 22 2 22 2 28 24 16 241 11 2 1 21 2k kk kk k k − = + − = + + + + i g714………………10g2102 g9961Og2144g11556g13551ABg11444g17421g12267 221d k= + g712 ( ) ( )22 2 221 16 24 2 212 211 2kkkk−+ =++i i g712g16403g5575 2 72k = g714……………11g2102 g295lg11444g7145g12347g1130g726 142y=± x + 2g714…………………12g2102 21g714g16403g726 g7081g709g11105f(x)g729exg711asin xg711bg712 g5507ag7291g7206g712g5575f′(x)g729exg711cos xg714 g5507xg281[0g712g711∞)g7206g712ex≥1g712cos xg281[g7131g7121]g712g1092g5507cos xg729g7131g7206g712xg7292kπg711πg712kg281Ng712g8596 g7206ex1g714 g6256g1301f′(x)g729exg711cos x0g712g2467f(x)g3416[0g712g711∞)g1082g2437g16947g17986g3790g712 g6256g1301f(x)min g729f(0)g7291g711bg712 g11105f(x)≥0g5762g6208g12539g712g55751g711b≥0g712g6256g1301b≥g7131g714 ……………………5g2102 g7082g709g11105f(x)g729exg711asin xg711bg5575 f′(x)g729exg711acos xg712g1092f(0)g7291g711bg714 g11105g20168g5951g5575f′(0)g729e0g711ag7291g712g6256g1301ag7290g714 ……………6g2102 g2552(0g7121g711b)g3416g2103g13551xg713yg7131g7290g1082g714 g6256g13010g7131g713bg7131g7290g714g6256g1301bg729g7132g714 g6256g1301f(x)g729exg7132g714 …………………………8g2102 g2467g7145g12347 22x m xe x−− = g7481g1108g16403g712g2591g5575 2 2xxe x m x− = − g712g6256g1301 xxe m= g714 g1594g3128g3316g3888g271g3635g272g1013g2217g1235g803 g13076g3994g271g16437g3994g272 g1300 ( ) xg x xe= g712g2121 ( ) ( 1)xg x e x′ = + …………………9g2102 g5507 ( , 1)x∈ −∞ − g7206g712 ( ) 0g x′ g712g6256g1301 ( )g x g3416( 1, )− +∞ g1082g7263g3790g2093g7072g714 g6256g1301 min 1( ) ( 1)g x g e= − =− g714……………………10g2102 g2552g5507x→−∞g7206g712 ( ) 0g x → g727g1092g7481 (1) 0g e= g714…………11g2102 g7072g5522g13571g2616g7235g11797g726 1 0me− g714g714……………………12g2102 22g714g16403g726g7081g709g296g3382Cg11444g7601g3456g7735g7145g12347g1130 )32cos(4 πθρ −= g712 g295 )cos21sin23(4)32cos(42 θθρπθρρ −=−= g712 g2552g296 222 yx +=ρ g712 θρcos=x g712 θρsin=y g712 g295 xyyx 23222 −=+ g712 g295g3382Cg11444g7326g17994g7145g12347g1130 032222 =−++ yxyx g727 …………5g2102 g7082g709g16878 yxz += 3 g712 g7029g3382Cg11444g7145g12347 4)3()1(0322 2222 =−++⇒=−++ yxyxyx g712 g295g3382Cg11444g3382g5619g7263 )3,1(− g712g2426g5556g72632g712 g4662+=−−=tytx213231g1299g1941 yxz += 3 g5575 tz −= g712 g2552g296g11556g13551lg17911 )3,1(−C g712g3382Cg11444g2426g5556g72632g712 g295 22 ≤≤− t g712g295 22 ≤−≤− t g712g2467 yx+3 g11444g2566g1644g14643g3364g7263 ]2,2[− g714……10g2102 23g714g16881g7230g726 g7081g709g8965g1072g726(1g7112x4)g713(2x3g711x2) g7292x3(xg7131)g713(xg7111)(xg7131) g729(xg7131)(2x3g713xg7131) g729(xg7131)(2x3g7132xg711xg7131) g729(xg7131)[2x(x2g7131)g711(xg7131)] g729(xg7131)2(2x2g7112xg7111) g729(xg7131)2 2 xg711122g71112 ≥0g712 g6256g13011g7112x4≥2x3g711x2g714 g8965g1212g726(1g7112x4)g713(2x3g711x2) g729x4g7132x3g711x2g711x4g7132x2g7111 g729(xg7131)2·x2g711(x2g7131)2≥0g712 g6256g13011g7112x4≥2x3g711x2g714 ……………………5g2102 g1594g3128g3316g3888g271g3635g272g1013g2217g1235g803 g13077g3994g271g16437g3994g272 g7082g709g3344g11306g729xg7112yg7113z≤ x2g711y2g711z2· 1g7114g7119g712g708g11105g7711g16303g1085g12665g5439g5575g709 g6256g1301x2g711y2g711z2≥187g712 g5507g1092g1269g5507xg729y2g729z3g2467xg72937g712yg72967g712zg72997g7206g712x2g711y2g711z2g7481g7472g4671g1644187g714……10g2102
展开阅读全文
相关搜索
资源标签