1、网人教 B 版 数学 必修 2: 球的体积和表面积一. 教学目标 知识与技能通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割求和化为准确和” ,有利于同学们进一步学习微积分和近代数学知识。能运用球的面积和体积公式灵活解决实际问题。培养学生的空间思维能力和空间想象能力。 过程与方法通过球的体积和面积公式的推导,从而得到一种推导球体积公式 R 3 和面积公式4R 2 的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想。 情感与价值观通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索
2、问题和解决问题的信心。二. 教学重点、难点重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。难点:推导体积和面积公式中空间想象能力的形成。三. 学法和教学用具 学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值 的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。 教学用具:投影仪四. 教学设计(一) 创设情景教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考。教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式。(二) 探究新知1球的
3、体积:如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片” , “小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割求和化为准确和”的方法来进行。步骤:第一步:分割如图:把半球的垂直于底面的半径作 n 等分,过这 些等分点,用一组平行于底面的平面把半球切割成 n 个“小圆片” , “小圆 片”厚度近似为 ,底面是“小圆片”的底面。nR如图:网得 )1()(1232 niniRnrVii 、 第二步:求和 6)(13321 nnvv 半 球第三步:化为准确的和当 n时,
4、 0 (同学们讨论得出)n1所以 332)6(RR 半 球得到定理:半径是的球的体积 34球练习:一种空心钢球的质量是 142g,外径是 5cm,求它的内径(钢的密度是 7.9g/cm3)2球的表面积:球的表面积是球的表面大小的度量,它也是球半径 R 的函数,由于球面是不可展的曲面,所以不能像推导圆柱、圆锥的表面积公式那样推导球的表面积公式,所以仍然用“分割、求近似和,再由近似和转化为准确和”方法推导。思考:推导过程是以什么量作为等量变换的?半径为 R 的球的表面积为 R 2练习:长方体的一个顶点上三条棱长分别为 3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是 。 (答案 50 元)(三) 典例分析课本 P47 例 4 和 P29例 5(四) 巩固深化、反馈矫正正方形的内切球和外接球的体积的比为 ,表面积比为 。(答案: ; 3 :1):在球心同侧有相距 9cm 的两个平行截面,它们的面积分别为 49cm 2和 400cm 2,求球的表面积。 (答案:2500cm 2)(五) 课 堂小结本节课主要学习了球的体积和球的表面积公式的推导,以及利用公式解决相关的球的问题,了解了推导中的“分割、求近似和,再由近似和转化为准确和”的解题方法。(六) 评价设计作业 P 30 练习 1、3 ,B(1)分析:可画出球的轴截面,利用球的截面性质求球的半径网高 考。试题;库