1、20152016 学年 第二学期高频电子线路课 程 设 计任务书题 目 电感三点式正弦波振荡器的设计院 系 电气学院 班 级 14 级通信工程(2)班 姓 名 黄江涛 况友杰 刘磊 鲁杰 倪靖 刘丙晟 指导教师 王银花 周珍艮 电气工程学院2016 年 6 月 18 日1高频电子线路任务书课题名称 电感三点式正弦波振荡器的设计指导教师(职称) 周珍艮(副教授) 王银花(讲师)执行时间 2015 2016 学年 第 二 学期 第 16 周学生姓名 学号 承担任务黄江涛 1409131078 电路设计及电路的仿真况友杰 1409131079 资料整理及原理分析刘丙晟 1409131080 电路图制
2、作刘磊 1409131082 资料整理及参数计算鲁杰 1409131082 参数计算及器件选择倪靖 1409131083 原理图绘制设计要求 1. 从理论上分析振荡器的各个参数及起振条件。2. 设计高频振荡器,选取电路各元件参数,使其满足起振条件及振幅条件。3. 电源电压 12V,工作频率 2M-4MHz,输出电压 1V,频率稳定度较高 要 求设计成 果 设计说明书 1 份,不少于 2000 字,应包含电感三点式正弦波振荡器的原理、设计电路、相关软件 Multisim 10 介绍、仿真电路、仿真波形分析。2摘要振荡器(英文:oscillator )是用来产生重复电子讯号(通常是正弦波或方波)的
3、电子元件。其构成的电路叫振荡电路,能将直流信号转换为具有一定频率的交流电信号输出。振荡器的种类很多,按振荡激励方式可分为自激振荡器、他激振荡器;按电路结构可分为阻容振荡器、电感电容振荡器、晶体振荡器、音叉振荡器等;按输出波形可分为正弦波、方波、锯齿波等振荡器。广泛用于电子工业、医疗、科学研究等方面。三点式振荡器是指 LC 回路的三个端点与晶体管的三个电极分别连接而组成的一种振荡器。 三点式振荡器电路用电容耦合或自耦变压器耦合代替互感耦合, 可以克服互感耦合振荡器振荡频率低的缺点, 是一种广泛应用的振荡电路, 其工作频率可达到几百兆赫。本文将围绕高频电感三点式正弦波振荡器进行具有具体功能的振荡器
4、的理论分析与设计。关键词:高频;电感三点式;正弦波;振荡器;缓冲级3目录摘要 .2目录 .3第一章 正弦波振荡器 .41.1 反馈振荡器产生振荡的原因及其工作原理 41.2 平衡条件 51.3 起振条件 51.4 稳定条件 5第二章 电路设计 .72.1 三点式振荡器的组成原则 72.2 电感三点式振荡器 72.3 振荡器设计的模块分析 9第三章 仿真软件 Multisim10.0 简介 113.1 Multisim 基本概念 .113.2 Multisim 软件启动界面 .113.3 Multisim 仿真软件的特点 .11第四章 仿真与调试 .154.1 仿真 .154.2 分析调试 .1
5、8第五章 心得体会 .19参考文献 .20附录一:元件清单 21附录二:总电路 22答辩记录及评分表 .234第一章 正弦波振荡器振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路。与放大器的区别:无需外加激励信号,就能产生具有一定频率、波形和振幅的交流信号。由晶体管等有源器件和具有某种选频能力的无源网络组成。正弦波振荡器按工作原理可分为反馈式振荡器与负阻式振荡器两大类。反馈式振荡器是在放大器电路中加入正反馈,当正反馈足够大时,放大器产生振荡,变成振荡器。所谓产生振荡是指这时放大器不需要外加激励信号,而是由本身的正反馈信号来代替外加激励信号的作用。负阻式振荡器则是将一
6、个呈现负阻特性的有源器件直接与谐振电路相接,产生振荡。1.1 反馈振荡器产生振荡的原因及其工作原理反馈型振荡器是通过正反馈联接方式实现等幅正弦振荡的电路。这种电路由两部分组成,一是放大电路,二是反馈网络。图 1.1 所示为反馈振荡器构成方框图及相应电路。由图可知,当开关 S 在 1 的位置,放大器的输入端外加一定频率和幅度的正弦波信号 Ui,这一信号经放大器放大后,在输出端产生输出信号 UO,若 UO经反馈网络并在反馈网络输出端得到的反馈信号 Uf 与 Ui 不仅大小相等,而且相位也相同,即实现了正反馈。若此时除去外加信号,将开关由 1 端转接到 2 端,使放大器和反馈网络构成一个闭环系统,那
7、么,在没有外加信号的情况下,输出端仍可维持一定幅度的电压 UO 输出,从而实现了自激振荡的目的。图 1.1 反馈振荡器的结构网络图为了使振荡器的输出 UO 为一个固定频率的正弦波,图 1.1 所示的闭合环路内必须含有选频网络,使得只有选频网络中心频率的信号满足 Uf 与 Ui 相同的条件而产生自激振荡,对其他频率的信号不满足 Uf 与 Ui 相同的条件而不产生振荡。 选频网络可与放大器相结合构成选频放大器,也可与选频网络相结合构成选频反馈网络。51.2 平衡条件振荡器的平衡条件即为 1)()(jFKjT也可以表示为 j20,2TKFn即为振幅平衡条件和相位平衡条件。平衡状态下,电源供给的能量正
8、好抵消整个环路损耗的能量,平衡时输出幅度将不在变化:振幅平衡条件决定了振荡器输出信号振幅的大小;环路只有在某一特定的频率上才能满足相位平衡条件:相位平衡条件决定了振荡器输出信号频率的大小。1.3 起振条件振荡器在实际应用时不应有外加信号,而应是一加上电后即产生输出;振荡的最初来源是振荡器在接通电源时不可避免地存在的电冲击及各种热噪声。振荡开始时激励信号很弱,为使振荡过程中输出幅度不断增加,应使反馈回来的信号比输入到放大器的信号大,即振荡开始时应为增幅振荡。由 可知, 称为自激振荡的起振条件,1iiTjUjj, 1)(jT也可写为 ()fLjYRF20,12Tf n分别称为起振的振幅条件和相位条
9、件,其中起振的相位条件即为正反馈条件。1.4 稳定条件振荡器的稳定条件分为振幅稳定条件和相位稳定条件。(1)振幅稳定条件要使振幅稳定,振荡器在其平衡点必须具有阻止振幅变化的能力。具体来说,就是在平衡点附近,当不稳定因素使振幅增大时,环路增益将减小,0iAUK从而使振幅减小。(2)相位稳定条件振荡器的相位平衡条件是 T(0 ) 。 在振荡器工作时, 某些不稳定因素可能破坏这一平衡条件。如电源电压的波动或工作点的变化可能使晶体管内部电容参数发生变化, 从而造成相位的变化, 产生一个偏移量 。 由于瞬时角频率是瞬时相位的导数, 所以瞬时角频率也将随着发生变化。为了保证相位稳定, 要求振荡器的相频特性
10、 T( )在振荡频率点应具有阻止相位变化的能力。具体来说, 在平衡点 =0附近, 当不稳定因素使瞬时角频率 增大时, 相频特性 T( 0)应产生一个 -, 从而产生一个-, 使瞬时角频率 减小。 6第二章 电路设计2.1 三点式振荡器的组成原则 基本电路就是通常所说的三端式(又称三点式)的振荡器,即 LC 回路的三个端点与晶体管的三个电极分别连接而成的电路,如图 2.1 所示。X1 、X2 、X3 三个电抗元件构成了决定振荡频率的并联谐振回路,同时也构成了正反馈所需的反馈网络。 根据谐振回路的性质,谐振时回路应呈纯电阻性,因而有 三个1230X电抗元件不能同时为感抗或容抗,必须由两种不同性质的
11、电抗元件组成。图 2.1 反馈网络三端式振荡器能否振荡的原则:(1)X1 和 X2 的电抗性质相同;(2)X3 与X1、 X2 的电抗性质相反。即射同余异,源同余异。2.2 电感三点式振荡器 X1 和 X2 为感性,X3 为容性,满足三端式振荡器的组成原则,反馈网络是由电感元件完成的,称为电感反馈振荡器,也称为哈特莱(Hartley)振荡器。(a) 电容反馈振荡器 (b) 电感反馈振荡器图 2.2 两种基本的三端式振荡器7(a) 实际电路 (b) 交流等效电路(c) 高频等效电路图 2.3 电感反馈振荡器电路电感反馈振荡器中,电感通常是绕在同一带磁芯的骨架上,它们之间存在互感,用 M 表示。同
12、电容反馈振荡器的分析一样,振荡器的振荡频率可以用回路的谐振频率近似表示,即 式中的 L 为回路的总电感, 10C12LM由相位平衡条件分析,振荡器的振荡频率表达式为 1 21()()ieoLLg式中的 与电容反馈振荡器相同,表示除晶体管以外的电路中所有电导折算到LgCE 两端后的总电导。振荡频率近似用回路的谐振频率表示时其偏差较小,而且线圈耦合越紧,偏差越小。电感反馈式三端振荡器优点(1)容易起振 (2)调整频率方便,变电容而不影响反馈系数。缺点(1) 振荡波形不够好,高次谐波反馈较强,波形失真较大。 (2) 不适于很高频率工作。823 振荡器设计的模块分析如图 2.4 所示即为设计的第一个模
13、块,也是此次设计的主要模块振荡电路模块。图 2.4 振荡电路模块原理图与前面的对振荡器电路的分析一样,图 2.4 中的 R1、R2 和 R3 均为电路的偏置电阻,C1 、C2 分别为旁路电容和隔直流电容,而 C1、L1 和 L2 的连接方式也符合电感三点式振荡器的原则,因此整个电路就构成了设计所需要的振荡电路。由振荡器的原理可以看出,振荡器实际上是一个具有反馈的非线性系统,精确计算是很困难的,而且也是不必要的。因此,振荡器的设计通常是进行一些设计考虑和近似估算,选择合理的线路和工作点,确定元件的参数值,而工作状态和元件的准确数值需要在调试中最后确定。设计时一般都要考虑一下一些问题:(1)晶体管
14、的选择从稳频的角度出发,应选择 较高的晶体管,这样的晶体管内部相移较小。通Tf常选择 。同时希望电流放大系数 大些,这既容易振荡,也便于减T1max(30)ff:小晶体管和回路之间的耦合。虽然不要求振荡器中的晶体管输出多大的功率,但考虑到稳频等因素,晶体管的额定功率也应有足够的余量。因此,在本次设计中将会 选取 BC107BP 作为振荡电路的三极管。该三极管的集电极电流最大值为 800mA,在 25时其功率可达到 0.5W,最大集电极电压可达30V,足够满足此次设计的各方面要求。9(2)直流馈电线路的选择为保证振荡器起振的振幅条件,起振工作点应设置在线性放大区;从稳频出发,稳定状态应该在截至区
15、,而不应在饱和区,否则回路的有载品质因数 QL 将降低。所以,通常应将晶体管的静态偏置点设置在小电流区,电路应采用自偏压。对于小功率晶体管,集电极电流约为 1-4mA。(3)振荡回路元件的选择从稳频出发,振荡回路中电容 C 应尽可能大,但 C 过大,不利于波段工作,因此,前页图 2.4 中各电容均选为 100nF 已经可以满足电路的设计要求。而电感 L 原本也应尽可能大,但 L 大后,体积大,分布电容大, L 过小,回路的品质因数过小,因此应该合理选择 L 的大小。根据此次设计的要求,输出频率为 2-4MHz,由计算公式 (式中 L=L1+L2+2M,M 为 L1 和 L2 之间的互感)以及反
16、馈系数1f=2C的要求,按照图 2.4 中所示选取 L1=5mH,L2=100uH0.5LMF应该能够满足设计的要求。10第三章 仿真软件 Multisim10.0 简介3.1 Multisim 基本概念Multisim 是美国国家仪器(NI)有限公司推出的以 Windows 为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用 Multisim 交互式地搭建电路原理图,并对电路进行仿真。Multisim 提炼了 SPICE 仿真的复杂内容,这样工程师无需懂得深入的 SPICE 技术就可以很快
17、地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过 Multisim 和虚拟仪器技术,PCB 设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。3.2 Multisim10.0 软件启动界面如图 3.1 所示,即为 Multisim10.0 软件的启动界面图。图 3.1113.3 Multisim 仿真软件的特点Multisim 是美国国家仪器(NI)有限公司推出的以 Windows 为基础的仿真工具,与其他仿真软件相比,Multisim 具有其自身特点。NI Multisim 软件是一个专门用于电子电路仿真与设计的 EDA
18、工具软件。作为 Windows 下运行的个人桌面电子设计工具,NI Multisim 是一个完整的集成化设计环境。NI Multisim 计算机仿真与虚拟仪器技术可以很好地解决理论教学与实际动手实验相脱节的这一问题。学员可以很方便地把刚刚学到的理论知识用计算机仿真真实的再现出来,并且可以用虚拟仪器技术创造出真正属于自己的仪表。NI Multisim软件绝对是电子学教学的首选软件工具。 (1)直观的图形界面 整个操作界面就像一个电子实验工作台,绘制电路所需的元器件和仿真所需的测试仪器均可直接拖放到屏幕上,轻点鼠标可用导线将它们连接起来,软件仪器的控制面板和操作方式都与实物相似,测量数据、波形和特
19、性曲线如同在真实仪器上看到的; (2)丰富的元器件 提供了世界主流元件提供商的超过 17000 多种元件,同时能方便的对元件各种参数进行编辑修改,能利用模型生成器以及代码模式创建模型等功能,创建自己的元器件。 (3)强大的仿真能力 以 SPICE3F5 和 Xspice 的内核作为仿真的引擎,通过 Electronic workbench 带有的增强设计功能将数字和混合模式的仿真性能进行优化。包括 SPICE 仿真、RF 仿真、MCU 仿真、VHDL 仿真、电路向导等功能。 (4)丰富的测试仪器 提供了 22 种虚拟仪器进行电路动作的测量: Multimeter(万用表) Function G
20、eneratoer(函数信号发生器) Wattmeter( 瓦特表) Oscilloscope(示波器) Bode Plotter( 波特仪) Word Generator(字符发生器) Parameter Sweep Analysis(参数扫描分析) Temperature Sweep Analysis(温度扫描分析) Transfer Function Analysis (传输函数分析) Worst Case Analysis(最差情况分析) Pole Zero Analysis(零级分析) Monte Carlo Analysis(蒙特卡罗分析) Trace Width Analysis
21、(线宽分析) Nested Sweep Analysis(嵌套扫描分析) Batched Analysis(批处理分析) 12User Defined Analysis(用户自定义分析) 它们利用仿真产生的数据执行分析,分析范围很广,从基本的到极端的到不常见的都有,并可以将一个分析作为另一个分析的一部分的自动执行。集成 LabVIEW和 Signalexpress 快速进行原型开发和测试设计,具有符合行业标准的交互式测量和分析功能; (5)独特的射频(RF)模块 提供基本射频电路的设计、分析和仿真。射频模块由 RF-specific(射频特殊元件,包括自定义的 RF SPICE 模型) 、用于
22、创建用户自定义的 RF 模型的模型生成器、两个 RF-specific 仪器(Spectrum Analyzer 频谱分析仪和 Network Analyzer 网络分析仪) 、一些 RF-specific 分析(电路特性、匹配网络单元、噪声系数)等组成; (6)强大的 MCU 模块 支持 4 种类型的单片机芯片,支持对外部 RAM、外部 ROM、键盘和 LCD 等外围设备的仿真,分别对 4 种类型芯片提供汇编和编译支持;所建项目支持 C 代码、汇编代码以及 16 进制代码,并兼容第三方工具源代码; 包含设置断点、单步运行、查看和编辑内部 RAM、特殊功能寄存器等高级调试功能。 (7)完善的后
23、处理 对分析结果进行的数学运算操作类型包括算术运算、三角运算、指数运行、对数运算、复合运算、向量运算和逻辑运算等; (8)详细的报告 能够呈现材料清单、元件详细报告、网络报表、原理图统计报告、多余门电路报告、模型数据报告、交叉报表 7 种报告;(9)兼容性好的信息转换 提供了转换原理图和仿真数据到其他程序的方法,可以输出原理图到 PCB 布线(如 Ultiboard、OrCAD、 PADS Layout2005、P-CAD 和 Protel) ;输出仿真结果到MathCAD、Excel 或 LabVIEW;输出网络表文件;向前和返回注;提供 Internet Design Sharing(互联
24、网共享文件)总的来说,Multisim 软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。凭借 NI Multisim 中完整的器件库,用户可以快速创建原理图,并利用工业标准 SPICE 仿真器仿真电路。借助专业的高级 SPICE 分析和虚拟仪器,电路设计者能在设计流程中提早对电路设计进行的迅速验证,从而缩短建模循环。13第四章 仿真与调试4.1 仿真在课程设计中,使用的仿真软件为 multisim10.0。该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。能够让使用者全面的收集电路的相关数据,进而有助于对电路进行改进。仿真电路如图 4.1:图
25、 4.1 震荡电路原理图取电感 L1,L2 的值为 5mH 100uH,只要开环增益 A1,即可起振。若使振荡频率f=16MHz,有公式 =1/ 得,此时电容 C=100PF。LC为保证三极管能够正常放大,要合理设置静态偏置,取 R1=150k,R2=30 k, Vb=R2/(R1+R2 ),Ve=Vb-0.7,Ve=1V,VeVbVc,发射级正偏,集电极反偏,三极管处于放大区。为了防止高频信号干扰直流电源,故接一滤波电容以消除影响。由于频率较高,如果在输出端直接接示波器,由于示波器电容的影响,振荡回路频率将发生变化。为了减少示波器对振荡回路的影响,故加入射级跟随器。旁路电容 10uf,起到隔
26、直通交的作用。仿真示波器显示如图 4.2:14图 4.2 波形显示从仿真结果,可以看出正弦波明显变得平滑,失真度变小,且输出电压峰峰值接近 1V,频率未变,满足实验要求。15修改参数可以使震荡频率达到 20MHZ,但是信号质量不好,有严重的失真。仿真示波器显示如下图 4.3 所示:图 4.3 失真波形显示当电容 C 很小时,输出频率可以达到很高(20MZH ) ,但是输出波形产生了越来越明显的失真,如上图所示。这说明电感三点式正弦波振荡器在很高振荡频率状态下的反馈电压中高次谐波分量较多,导致输出波形差。图 4.4 输入电压 图 4.5 输出电压有上述图 4.4,图 4.5 所示,可以轻易看出输
27、入电压为 12V,输出电压为 1V,根据设计要求可知,本电路设计符合设计要求。164.2 分析调试由仿真波形可见,电感电感三点式振荡器存在一定的失真,这是由其本身的缺点造成的。由于晶体管存在极间电容,对电感反馈振荡器,极间电容与回路电感并联,在频率高时极间电容影响大,有可能使电抗的性质改变,电感反馈振荡器的工作频率不能过高;电容反馈振荡器,其极间电容与回路电容并联,不存在电抗性质改变的问题,工作频率可以较高。振荡器在稳定振荡时,晶体管工作在非线性状态,在回路中除有基波电压外还存在少量谐波电压(其大小与回路 Q 值有关) 。对电容反馈振荡器,由于反馈是由电容产生的,所以高次谐波在电容上产生的反馈
28、压降较小;而对电感反馈振荡器,反馈是由电感产生的,所以高次谐波在电感上产生的反馈压降较大,因此电容反馈振荡器的输出波形比电感反馈振荡器的输出波形要好。改变电容能够调整振荡器的工作频率。电容反馈振荡器在改变频率时,反馈系数也将改变,会影响振荡器的振幅起振条件,故电容反馈振荡器一般工作在固定频率;电感反馈振荡器在改变频率时,并不影响反馈系数,工作频带较电容反馈振荡器的宽。但电感反馈振荡器的工作频带不会很宽,因为改变频率将改变回路的谐振阻抗,可能使振荡器停振。17第五章 心得体会通过本次课程设计,我学会了使用 Multisim10.0 软件,学会了设计电路,这次课程设计提高了我们的逻辑思维能力,使我
29、们在高频电路的分析与设计上有了很大的进步。加深了我们对晶体管放大电路与振荡电路的认识,进一步增进了对一些常见电子器件的了解。尤其是正弦波振荡器和 LC 振荡器,还有高频电感三点式正弦波振荡器。这次高频课程设计, 首先,提高了我们的逻辑思维能力,使我们在高频电路的分析与设计上有了很大的进步。其次,查阅参考书的独立思考的能力以及培养非常重要,我们在设计电路时,遇到很多不理解的东西,有的我们通过查阅参考书弄明白,有的通过网络查到,但由于时间和资料有限我们更多的还是独立思考。最后,相互讨论共同研究也是很重要的,经常出现一些问题,比如电路仿真时,一开始的时候波形严重失真,和理论上完全不一样,但是和其他的
30、同学讨论后,通过调整相关电阻和电容的值,最终波形出来了。总之,通过这次高频课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,从而提高自己的实际动手能力和独立思考的能力。本次课程设计的题目是高频电感三点式正弦波振荡器的设计,主要应用了高频电子线路三点式振荡器电路内容。因为高频的知识本来就不容易懂,所以查找资料和查阅基础知识,花了很长的时间。这些都应归咎于自己基础知识的匮乏。通过查找资料,结合书本中所学的知识,我最终完成了课程设计的内容。把书中所学的理论知识和具体的实践相结合,有利于我们对课本中所学知识的理解,并加强了我
31、们的动手能力。这次设计让我更好地掌握了常用元件的识别和测试,更加深刻地理解了课本知识。在此次做课程设计的过程中,我深深地感受到了自己所学到知识的有限和自身的不足,并且学会了对所找内容的取舍及分析。总之,从中我学习到了如何解决遇到的困难,而且进一步熟悉了晶体管的应用并掌握了其工作原理和具体的使用方法,增强了对实验的思考能力。18参考文献【1】曾兴文、刘乃安、陈健高频电子线路M.北京:高等教育出版社,2007【2】张肃文等高频电子线路(第四版) M.北京:高等教育出版社, 2004【3】聂典等Multisim 10 计算机仿真M.北京:电子工业出版社, 2010【4】王志纲现代电子线路 ,M.清华
32、大学出版社, 2003【5】张肃文高频电子线路 ,M.高等教育出版社, 1993【6】杨翠娥高频电子线路实验与课程设计 ,M.哈尔滨工程大学出版社,1996【7】高如云通信电子线路 ,M.西安电子科技大学出版社,2005【8】李银花电子线路设计指导 ,M.航空航天大学出版社,2005【9】朱力恒电子技术仿真实验教程 ,M.电子工业出版社,2003【10】康华光电子技术基础 ,M.高等教育出版社,200019附录一:元件清单元件 参数或型号 数量电阻 15 1电阻 150 1电阻 30K 1电阻 3.6K 1瓷片电容 102 4可变电容 350pF 1电感 5mH 2电感 100uH 1三极管
33、BC107BP 120附录二:总电路21答辩记录及评分表 课题名称 电感三点式正弦波振荡器的设计答辩教师(职称) 周珍艮(副教授) 王银花(讲师)答辩时间 2015-2016 学年第 2 学期 第 16 周答辩记录1.三点式振荡器的优点?答:三点式振荡器电路用电容耦合或自耦变压器耦合代替互感耦合,可以克服互感耦合振荡器振荡频率低的缺点。2电感三点式电路如何改变振荡频率?答:改变回路电容从而改变振荡频率。3.电感三点式振荡器的优缺点?答:优点是通过改变电容来改变振荡频率不会影响反馈系数。缺点是反馈电压取自电感 L,而电感线圈对高次谐波呈现高阻抗,所以反馈电压中高次谐波分量较大,输出波形较差。评分表学生姓名 学号 评分黄江涛 1409131078况友杰 1409131079刘丙晟 1409131080刘磊 1409131082鲁杰 1409131082倪靖 140913108322