收藏 分享(赏)

人教九年级数学上册 23.1图形的旋转(第1课时)导学案(3).doc

上传人:weiwoduzun 文档编号:5164248 上传时间:2019-02-11 格式:DOC 页数:4 大小:269KB
下载 相关 举报
人教九年级数学上册 23.1图形的旋转(第1课时)导学案(3).doc_第1页
第1页 / 共4页
人教九年级数学上册 23.1图形的旋转(第1课时)导学案(3).doc_第2页
第2页 / 共4页
人教九年级数学上册 23.1图形的旋转(第1课时)导学案(3).doc_第3页
第3页 / 共4页
人教九年级数学上册 23.1图形的旋转(第1课时)导学案(3).doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第二十三章 旋转23.1 图形的旋转第 1 课时 认识图形的旋转1.了解旋转及其旋转中心和旋转角的概念.2.了解旋转对应点的概念及应用它们解决一些实 际问题.3.通过观察具体实例认识旋转,探索它的基本性质.4.了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.知识准备(学生活动) 请同学们完成下面各题.1.将如图所示的四边形 ABCD 平移,使点 B 的对应点为点 D,作出平移后的图形.2.如图,已知ABC 和直线 l,请你画出ABC 关于 l 的对称图形A BC .来源: 学优高考网3.圆是轴对称图形吗?等腰三角形呢?你还能指出其他的吗?(是;是;等腰梯形、长方形、正多边形等.)(1

2、)平移的有关概念及性质.(2)如何画一 个图形关于一条直线(对称轴)的对称图形并口述它有哪些性质.(3)什么叫轴对称图形.自学指导自学教材第 59 页内容,思考和完成教材上的练习.观察:让学 生看转动的钟表和风车等.(1)上面情景中的转动现象,有什么共同的特征?(指针、风车叶片分别绕中间轴旋转)(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(形状、大小不变,位置发生变化) 来源: 学优高考网 gkstk问题:从 3 时到 5 时,时针转动了多少度?(60)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了多少度?(90)来源:学优高考网以上现象有什么共同特点?(物体绕

3、固定点旋转)思考:在数学中如何定义旋转?知识探究把一个图形绕着某一点 O 转动一 个角度的图形变换叫做旋转,点 O 叫做旋转中心,转动的角叫做旋转角.如果图形上的点 P 经过旋转变为点 P,那么这两个点叫做这个旋转的对应点 .来源:gkstk.Com自学反馈1.下列物体的运动不是旋转的是( C )A.坐在摩天轮里的小朋友 B.正在走动的时针C.骑自行车的人 D.正在转动的风车叶片2.下列现象中属于旋转的有 4 个.地下水位逐年下 降;传送带的移动;方向盘的转动;水龙头的转动;钟摆的运动;荡秋千运动.3 .如图,如果把钟表的指针看成四边形 AOBC,它绕着 O 点旋转到四边形 DOEF 位置,在

4、这个旋转过程中:旋转中心是 O,旋转角是 AOD(BOE),经过旋转,点 A 转到 D,点 C 转到 F,点 B 转到 E,线段 OA、OB、BC、AC 分别转到 OD、OE、EF、DF,A、B、C 分别与D、 E、F 是对应角.旋转角指对应点与旋转中心的连线的夹角.活动 1 小组讨论例 1 如图,四边形 ABCD、四边形 EFGH 都是边长为 1 的正方形.来源:学优高考网(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角. 来源:学优高考网 gkstk(3)经过旋转,点 A、B、C、D 分别移到什么位置?(1)可以看做是由正方形 ABCD 的基本图案通过旋

5、转而得到的.(2) 画图略.(3)点 A、点 B、点 C、点 D 移到的位置是点 E、点 F、点 G、点 H.这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.例 2 如图,ABC 与ADE 都是等腰直角三角形,C 和AED 都是直角,点 E 在 AB 上,如果ABC 经旋转后能与ADE 重合,那么旋转中心是点 A;旋转的度数是 45.活动 2 跟踪训练 两个边长为 1 的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合 部分的面积为 ,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积4是否发生变化?说

6、明理由.设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明 SOEE =SODD ,那么只要说明OEE ODD.自学指导 自学教材第 60 页内容,并完成教材第 61 页练习.教师用几何画板演示 请看我手里拿着的硬纸板,我在 硬纸板上挖 下一个三角形的洞,再挖一个点 O 作为旋转中心,把挖好的 硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(ABC),然后围绕旋转中心 O转动硬纸板,在黑板上再描出这个挖掉的三角形(A BC),移去硬纸板.(分组讨论) 根据图回答下面问题(一组推荐一人上台说明)1.线段 OA 与 OA、OB 与 OB、OC 与 OC有什么关系?2

7、.AOA、BOB、COC有什么关系?3.ABC 与 ABC形状和大小有什么关系?1.OA=OA,OB=OB ,OC=OC,也就是对应点到旋转中心距离相等 .2.AOA=BOB= COC ,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.3.ABC 和 ABC形状相同且大小相等,即全等.知识探究(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等 .来源:学优高考网 gkstk活动 1 小组讨论例 3 如图,E 是正方形 ABCD 中 CD 边上任意一点,以点 A 为中心,把ADE 顺时针旋转 90,画出旋转后的图形. 关

8、键是确定ADE 三 个顶点的对应点的位置.例 4 已知线段 AB 和点 O,画出 AB 绕点 O 逆时针旋转 100后的图形. 来源:学优高考网 gkstk作法:1.连接 OA ; 2.在逆时针方向作 AOC=100在 OC 上截取 OA=OA; 3.连接 OB;4.在逆时针方向作BOD=100在 OD 上截取 OB=OB ; 5.连接 AB .线段 A B 就是线段 AB 绕点 O 按逆时针方向旋转 100后的对应线段.作图应满足三要素:旋转中心、旋转角、旋转方向.活动 2 跟踪训练1.如图,AD=DC=BC,ADC=DCB=90 , BP=BQ,PBQ=90 .此图能否旋转某一部分得到一个

9、正方形? 若能,指出由哪一部分旋转而得到的?并说明理由.它的旋转角多大?并指出它们的对应点.解:能. 由BCQ 绕 B 点旋转得到.理由:连结 AB,易证四边形 ABCD 为正方形.再证ABPCBQ.可知QCB 可绕 B 点旋转与ABP 重合,从而得到正方形 ABCD.90 .点 C 对应点 A,点 Q 对应点 P.2.如图,ABC 绕 C 点旋转后,顶点 A 的对应点为点 D,试确定顶点 B 对应点的位置,以及旋转后的三角形. 解:(1)连接 CD,来源:学优高考网 gkstk(2)以 CB 为一边作BCE ,使得BCE=ACD,(3)在射线 CE 上截取 CB=CB,则 B即为所求的 B

10、的对应点.(4)连结 DB,则DBC 就是ABC 绕 C 点旋转后的图形.绕 C 点旋转,A 点的对应点是 D 点,那么旋转角就是 ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即BCB =ACD,又由对应点到旋转中心的距离相等,即 CB=CB,就可确定 B的位置,如图所示.3.如图,K 是正方形 ABCD 内一点,以 AK 为一边作正方形 AKLM,使 L、M 在 AK 的同旁,连接 BK 和 DM,试用旋转的思想说明线段 BK 与 DM 的关系.解:四边形 ABCD、四边 形 AKLM 是正方形, AB=AD ,AK=AM,且BA D=KAM 为旋转角且 为 90.ADM 是以 A 为旋转中心,BAD 为旋转角由ABK 旋转而成的.BK=DM.要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.活动 3 课堂小结1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.3.本节课要掌握:(1)旋转的基本性质 .(2)旋转变换与平移、轴对称两种变换有哪些共性与区别.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报