第三章 三角恒等变换本章综述本章主要包括两角和与差的三角函数及二倍角的三角函数,它是以两角差的余弦公式为基础,利用向量为工具推导出来的.尤其是两角差的余弦和正弦公式,它们是本章各类公式的基础,学习这两个公式时,应注意它们的推导和一般性,同时要做足够的练习,牢记这些公式.本章的重点是:两角和与差的三角公式、二倍角公式及其运用.本章的难点是:综合运用三角公式进行三角函数式的化简、求值和三角恒等式的证明.学习本章时应注意以下几点:(1)经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用.(2)能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系.(3)能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆).本章的三角公式众多,对学过的公式做到真正的理解、记准、记熟、用活.掌握知识体系,对三角函数式的恒等变形,要牢记公式及其相互关系,在应用公式时要特别注意逆用公式或变形使用,训练逆向思维能力.三角函数的问题千变万化,但只要抓住三角函数式的恒等变形这一根本,许多看似不同的问题的解法是相同的.此外在学习中要注意领会数学思想与方法的实质.本章中化归思想、数形结合思想、等价转化思想都是贯穿始终的重要思想和方法,在掌握知识的同时应注意这些思想和方法的应用.