收藏 分享(赏)

2018届福建省泉州市泉港区第一中学高三年上学期期末考数学(文)试题.doc

上传人:cjc2202537 文档编号:5096724 上传时间:2019-02-08 格式:DOC 页数:10 大小:750.50KB
下载 相关 举报
2018届福建省泉州市泉港区第一中学高三年上学期期末考数学(文)试题.doc_第1页
第1页 / 共10页
2018届福建省泉州市泉港区第一中学高三年上学期期末考数学(文)试题.doc_第2页
第2页 / 共10页
2018届福建省泉州市泉港区第一中学高三年上学期期末考数学(文)试题.doc_第3页
第3页 / 共10页
2018届福建省泉州市泉港区第一中学高三年上学期期末考数学(文)试题.doc_第4页
第4页 / 共10页
2018届福建省泉州市泉港区第一中学高三年上学期期末考数学(文)试题.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、2018 届福建省泉州市泉港区第一中学高三年上学期期末考数学(文)试题(考试时间:120 分钟 总分:150 分)第卷(选择题 60 分)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数 与 的定义域分别为 、 ,则 ( )1yxln(2)yxMNA B C D(,21,(,1(2,)(2,)2.若 ,则复数 对应的点在( )izzA第一象限 B第二象限 C第三象限 D第四象限 3设 D、E、 F 分别为ABC 三边 BC、CA 、AB 的中点,则 + + =( )A B C D 4.从编号为 1,2,,79,80

2、的 80 件产品中,采用系统抽样的方法抽取容量为 5 的样本,若编号为 10 的产品在样本中,则该样本中产品的最大编号为( )A72 B73 C74 D75 5.已知角 ( )终边上一点的坐标为 ,则 ( )036(sin150,cos)A B C D 1515366.函数 的大致图象是( )ln|()xf7我国古代数学著作九章算术有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的 S=1.5(单位:升) ,则输入 k 的值为( )A6 B4.5 C7.5 D98.某几何体的三视图如图所示,则

3、其体积为( ) A B C D3424123249.实数 , 满足 时,目标函数 的最大值等于 5,则实数 的值为( xy1|yxzmxym)A B C D 12210.三棱锥 中,侧棱 底面 , , , , ,则该三棱SCSA5AB860B25SA锥的外接球的表面积为( )A B C D 643256343620483711.已知动点 在椭圆 上,若点 的坐标为 ,点 满足 , ,则P17xyA(,)M|1A0PM的最小值是( )|MA B C D 232312.已知函数 cos,1,lg2xf,关于 x的方程 fa的五个实根由小到大依次为12345,xx,则 345的取值范围是( )A.

4、, B. 1, C. 1,2 D. 1,0第卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13.观察下列式子: , , ,根据上述规律,第 个不等213215322174n式可能为 14.已知函数 ( , )的图象如图所示,则 的值为 ()sin)fx0(0)f15.双曲线 ( , )上一点 关于渐进线的对称点恰为右焦点 ,则该双曲线的离21xyab0abM2F心率为 16.在希腊数学家海伦的著作测地术中记载了著名的海伦公式,利用三角形的三条边长求三角形面积,若三角形的三边长为 , , ,其面积 ,这里 已知在abc()()Spabpc1()2pabc中, ,

5、 ,则 面积的最大值为 ABC62ABCAB三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列 满足 , na112()2nna*N()求数列 的通项公式;()若 , ,求证:对任意的 , .221loglnnnba12nTb*n1nT18.在如图所示的多面体 中, 为直角梯形, , ,四边形ABCDEF/ABCD90为等腰梯形, ,已知 , , ADEF/C2FE4()求证: 平面 ;CDAEF()求多面体 的体积 . B19.天气预报是气象专家根据预测的气象资料和专家们的实际经验,经过分析推断得到的,在现实的生产生活中有着重要的意义.

6、某快餐企业的营销部门经过对数据分析发现,企业经营情况与降雨天数和降雨量的大小有关.()天气预报说,在今后的三天中,每一天降雨的概率均为 ,该营销部门通过设计模拟实验的方40%法研究三天中恰有两天降雨的概率,利用计算机产生 0 到 9 之间取整数值的随机数,并用 1,2,3,4,表示下雨,其余 6 个数字表示不下雨,产生了 20 组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989求由随机模拟的方法得到的概率值;()经过数据分析,一天内降雨量的大小 (单位:毫米)与其出售的快餐份数

7、成线性相关关系,该x y营销部门统计了降雨量与出售的快餐份数的数据如下:降雨量(毫米) 1 2 3 4 5快餐数(份) 50 85 115 140 160试建立 关于 的回归方程,为尽量满足顾客要求又不造成过多浪费,预测降雨量为 6 毫米时需要准备的yx快餐份数 (结果四舍五入保留整数)附注:回归方程 中斜率和截距的最小二乘估计公式分别为:ybxa,12()niiiiixbyx20已知点 P 是圆 F1:(x1) 2+y2=8 上任意一点,点 F2 与点 F1 关于原点对称,线段 PF2 的垂直平分线分别与 PF1,PF 2 交于 M,N 两点(1 )求点 M 的轨迹 C 的方程;(2 )过点

8、 的动直线 l 与点 M 的轨迹 C 交于 A,B 两点,在 y 轴上是否存在定点 Q,使以 AB 为直径的圆恒过这个点?若存在,求出点 Q 的坐标;若不存在,请说明理由21.已知函数 ,其中 1()xafxe0()若 ,求函数 的图象在点 处的切线方程;1a()yf(,)f()若 , 恒成立,求 的取值范围.0x()fa请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修 4-4:坐标系与参数方程在平面直角坐标系 中,直线 的参数方程为 ( 为参数, )以坐标原点 为极xOyl1cosinxtyt0O点, 轴的非负半轴为极轴,并取相同的长度单位,建立极坐标系曲

9、线 x 1:C(I)若直线 与曲线 相交于点 ,证明: 为定值;l1C,1,ABMAMB(II)将曲线 上的任意点 作伸缩变换 后,得到曲线 上的点 ,求曲线 的内接1,yx3xy2,yx2C矩形 最长的最大值ABCD23.选修 4-5:不等式选讲已知函数 .()2|1|fxx()求函数 的图象与直线 围成的封闭图形的面积 ;()fx1ym()在()的条件下,若正数 、 满足 ,求 的最小值.ab2ab2泉港一中 2017-2018 学年上学期期末质量检测高三数学(文科)试题答案一、选择题1-5: 6-10: 11、C 12: BBACBAD二、填空题 13. 14. 15. 16.22113

10、()n2512三、解答题17. 解:()当 时,1n112()2-nnaa ( -得, , 1()()2nnna2na当 时, ,所以 *N()因为 , .n2211logl()nnban 因此 ,123nT 所以 .n18.()证明:取 AD 中点 M,连接 EM,AF =EF=DE=2,AD=4,可知 EM= AD,AEDE,12又 AEEC, AE 平面 CDE,DEC ,AECD,又 CDAD,平 面,CD平面 ADEF A()由(1)知 CD平面 ADEF, 平面 ABCD,CD平面 ABCD平面 ADEF;作 EOAD,EO平面 ABCD,EO = , 3连接 AC,则 ABCDE

11、F-AFABCVV,11(24)333C-ADEFS, -BABCO 4316ABDEFV19.解:()上述 20 组随机数中恰好含有 1,2 ,3,4 中的两个数的有 191 271 932 812 393 ,共5 个,所以三天中恰有两天下雨的概率的近似值为 .51=0P()由题意可知 , 12345x, 50+8406=y152()75=.10iiiiixyb ,所以, 关于 的回归方程为: =27.abxyxyx将降雨量 代入回归方程得: . 627.561953所以预测当降雨量为 6 毫米时需要准备的快餐份数为 193 份 20.【 解答】解:(1)由题意得 ,点 M 的轨迹 C 为以

12、 F1,F 2 为焦点的椭圆 ,点 M 的轨迹 C 的方程为 (2 )直线 l 的方程可设为 ,设 A(x 1,y 1) ,B(x 2,y 2) ,联立 可得 9(1+2k 2)x 2+12kx16=0由求根公式化简整理得 ,假设在 y 轴上是否存在定点 Q(0,m) ,使以 AB 为直径的圆恒过这个点,则 即 ,= = 求得 m=1因此,在 y 轴上存在定点 Q(0,1 ) ,使以 AB 为直径的圆恒过这个点21. 解:()当 时, ,当 时, ,axexf)1()1exf2)(,所以所求切线方程为: 1()fe 3y()首先 ,令其为 ,则 xeaaxf )1()( )(xgxeax)12

13、()1) 当 即 时, 单调递减,即 单调递减,220,0g(f, 单调递减, ,所以 成立; )(xf)(f)(xf 212) 当 时, 解得: ,当 时,a1 xeax ax)12,0(ax单调递增,即 单调递增,,0)(xg)()(f, 单调递增, ,所以 不成立 ff 0x2综上所述: 21a22. 22.(I)曲线 1:Cxy,221cosincosin10xtyt12MABt(II)伸缩变换后得 其参数方程为: 2:13xCy3cosinxy不妨设点 在第一象限,由对称性知:,Amn周长为 4,3sin, ( 时取等号)周长最大为 8sin86823. 解:()函数3,1,()21,.xfx它的图象如图所示:函数 的图象与直线 的交点为 、 ,)(xf1y(4,1)(0,故函数 的图象和直线 围成的封闭图形的面积 14362m() ab62,62, 844)1( ba当且仅当 ,可得 时等号成立,3,2的最小值是ba4

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报