1、 应用时间序列分析 实验手册 2 目 录 目 录 . 2 第二章 时间序列的预处理 3 一、平稳性检验 3 二、纯随机性检验 9 第三章 平稳时间序列建模实验教程 10 一、模型识别 10 二、模型参数估计 (如何判断拟合的模型以及结果写法) 14 三、模型的显著性检验 17 四、模型优化 18 第四章 非平稳时间序列的确定性分析 19 一、趋势分析 19 二、季节效应分析 34 三、综合分析 38 第五章 非平稳序列的随机分析 44 一、差分法提取确定性信息 44 二、 ARIMA 模型 . 58 三、季节模型 62 3 第二章 时间序列的预处理 一、平稳性检验 时序图检验和自相关图检验 (
2、一)时序图检验 根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征 例 2.1 检验 1964 年 1999 年中国纱年产量序列的平稳性 1.在 Eviews 软件中打开案例数据 图 1:打开外来数据 图 2:打开数据文件夹中案例数据文件夹中数据 4 文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入 图 3:打开过程中给序列命名 图 4:打开数据 5 2.绘制时序图 可以如下图所示选择序列然后点 Quick 选择 Scatter 或者 XYline; 绘制好后可以双击图片对其进行修饰,如颜色
3、、线条、点等 图 1:绘制散点图 图 2:年份和产出的散点图 6 01 0 02 0 03 0 04 0 05 0 06 0 01 9 6 0 1 9 7 0 1 9 8 0 1 9 9 0 2 0 0 0Y E A ROUTPUT图 3:年份和产出的散点图 (二)自相关图检验 例 2.3 导入数据,方式同上; 在 Quick 菜单下选择自相关图,对 Qiwen 原列进行分析; 可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。 图 1:序列的相关分析 7 图 2:输入序列名称 图 2:选择相关分析的对象 图 3:序列的相关分析结果 :1. 可以看出自相关系数始终在零周围波动,判定
4、该序列为平稳时间序列 2.看 Q 统计量的 P 值:该统计量的原假设为 X 的 1 期, 2 期 k 期的自相关系数均等于 0,备择假设为自相关系数中至少有一个不等于 0,因此如图知,该 P 值都 5%的显著性水平 ,所以接 受原假设 ,即序列是 纯随机序列 ,即白噪声序列 (因为 序列值之间彼此之间没有任何关联 ,所以说过去的行为对将来的发展没有丝毫影响 ,因此为纯随机序列 ,即白噪声序列 .) 有的题目平稳性描述可以模仿书本 33 页最后一段 . (三)平稳性检验还可以用: 8 单位根检验: ADF,PP 检验等; 非参数检验:游程检验 图 1:序列的单位根检验 图 2:单位根检验的方法选
5、择 表示不包含 截距项 9 图 3: ADF 检验的结果 :如图,单位根统计量 ADF=-0.016384 都大于 EVIEWS 给出的显著性水平 1%-10%的 ADF 临界值, 所以接受原假设,该序列是 非平稳的。 二、纯随机性检验 计算 Q 统计量,根据其取值判定是否为纯随机序列。 例 2.3 的自相关图中有 Q 统计量,其 P 值在 K=6、 12 的时候均比较大,不能拒绝原假设,认为 该序列是白噪声序列。 另外,小样本情况下, LB 统计量检验纯随机性更准确。 10 第三章 平稳时间序列建模实验教程 一、模型识别 1.打开数据 图 1:打开数据 2.绘制趋势图并大致判断序列的特征 图
6、 2:绘制序列散点图 11 图 3:输入散点图的两个变量 图 4:序列的散点图 12 3.绘制自相关和偏自相关图 图 1:在数据窗口下选择相关分析 图 2:选择变量 图 3:选择对象 13 图 4:序列相关图 4.根据自相关图和偏自相关图的性质确定模型类型和阶数 如果样本 (偏 )自相关系数在最初的 d 阶明显大于两倍标准差范围,而后几乎 95的自相关系数都落在 2 倍标准差的范围以内,而且通常由非零自相关系数衰减为小值波动的过程非常突然。这时,通常视为 (偏 )自相关系数截尾。截尾阶数为 d。 本例: 自相关图显示延迟 3 阶之后,自相关系数全部衰减到 2 倍标准差范围内波动,这表明序列明显
7、地短期相关。但序列由显著非零的相关系数衰减为小值波 动的过程相当连续,相当缓慢,该自相关系数可视为不截尾 偏自相关图显示除了延迟 1 阶的偏自相关系数显著大于 2 倍标准差之外,其它的偏自相关系数都在 2 倍标准差范围内作小值随机波动,而且由非零相关系数衰减为小值波动的过程非常突然,所以该偏自相关系数可视为一阶截尾 所以可以考虑拟合模型为 AR(1) 自相关系数 偏相关系数 模型定阶 拖尾 P 阶截尾 AR(p)模型 Q 阶截尾 拖尾 MA( q)模型 拖尾 拖尾 ARMA(P,Q)模型 具体判别什么模型看书 58 到 62 的图例。 :就是常数项)。表示的是求出来的系数(其中模型中的模型:)
8、(模型:模型:)1(MA)1(arB*)P(ARB*)2(ARB*)1(AR1B*)q(MAB*)2(MAB*)1(MA1A R M AB*)q(MAB*)2(MAB*)1(MA1MAB*)P(ARB*)2(ARB*)1(AR11ARtP2q2tXtq2tXtP2tX14 二、模型参数估计 根据相关图模型确定为 AR(1),建立模型估计参数 在 ESTIMATE 中按顺序输入变量 cx c cx(-1)或者 cx c ar(1) 选择 LS参数估计方法,查看输出结果,看参数显著性,该例中两个参数都显著。 细心的同学可能发现两个模型的 C 取值不同,这是因为前一个模型的 C 为截距项;后者的 C
9、 则为 序列期望值 ,两个常数的含义不同。 图 1:建立模型 15 图 2:输入模型中变量,选择参数估计方法 图 3:参数估计结果 图 4:建立模型 16 图 5:输入模型中变量,选择参数估计方法 图 6:参数估计结果 tB703332.01 132034.81txAR 模型:17 三、 模型的显著性检验 检验内容: 整个模型对信息的提取是否充分; 参数的显著性检验,模型结构是否最简。 图 1:模型残差 18 图 2:残差的平稳性和纯随机性检验 对残差序列进行白噪声检验,可以看出 ACF 和 PACF 都没有显著异于零, Q 统计量的 P 值都远远大于 0.05,因此可以认为残差序列为白噪声序
10、列,模型信息提取比较充分。 常数和滞后一阶参数的 P 值都很小,参数显著;因此整个模型比较精简,模型较优。 四、 模型优化 当一个拟 合模型通过了检验,说明在一定的置信水平下,该模型能有效地拟合观察值序列的波动,但这种有效模型并不是唯一的。 当几个模型都是模型有效参数显著的,此时需要选择一个更好的模型,即进行优化。 优化的目的,选择相对最优模型。 优化准则: 最小信息量准则( An Information Criterion) 指导思想 似然函数值越大越好 未知参数的个数越少越好 AIC 准则的缺陷 在样本容量趋于无穷大时,由 AIC 准则选择的模型不收敛于真实模型,它通常比真实模型所含的未知
11、参数个数要多 但是本例中滞后二阶 的参数不显著,不符合精简原则,不必进行深入判断。 )(2)ln ( 2 未知参数个数 nA IC)(ln ()ln ( 2 未知参数nnS B C 19 第四章 非平稳时间序列的确定性分析 第三章介绍了平稳时间序列的分析方法,但是自然界中绝大多数序列都是非平稳的,因而对非平稳时间序列的分析跟普遍跟重要,人们创造的分析方法也更多。这些方法分为确定性时序分析和随机时序分析两大类,本章主要介绍确定性时序分析方法。 一个序列在任意时刻的值能够被精确确定(或被预测),则该序列为确定性序列,如正弦序列、周期脉冲序列等。而某序列在某时刻的取值是随机的,不能给以精确预测,只知
12、道取某一数值的概率,如白噪声序列等。 Cramer 分解定理说明每个序列都可以分成一个确定序列加一个随机序列,平稳序列的两个构成序列均平稳,非平稳时间序列则至少有一部分不平稳。本章先分析确定性序列不平稳的非平稳时间时间序列的分析方法。 确定性序列不平稳通常显示出非常明显的规律性,如显著趋势或者固定变化周期,这种规律性信息比较容易提取,因而传统时间序列分析的重点在确定性信息的提取上。 常用的确定性分析方法为因素分解。分析目的为: 克服其他因素的影响,单纯测度某一个确定性因素的影响; 推断出各种因素彼此 之间作用关系及它们对序列的综合影响。 一、 趋势分析 绘制序列的线图,观测序列的特征,如果有明
13、显的长期趋势,我们就要测度其长期趋势,测度方法有:趋势拟合法、平滑法。 (一) 趋势拟合法 1.线性趋势拟合 例 1:以澳大利亚政府 1981-1990 年每季度消费支出数据为例进行分析。 图 1:导入数据 20 图 2:绘制线图,序列有明显的上升趋势 长期趋势具备线性上升的趋势,所以进行序列对时间的线性回归分析。 图 3:序列支出( zc)对时间( t)进行线性回归分析 21 图 4:回归参数估计和回归效果评价 可以看出回归参数显著,模型显著,回归效果良好,序列具有明显线性趋势。 图 5:运用模型进行预测 22 图 6:预测效果(偏差率、方差率等) 图 7:绘制原序列和预测序列的线图 23
14、图 8:原序列和预测序列的线图 图 9:残差序列的曲线图 可以看出残差序列具有平稳时间序列的特征,我们可以进一步检验剔除了长期趋势后的残差序列的平稳性,第三章知识这里不在叙述。 24 2.曲线趋势拟合 例 2:对上海证券交易所 1991.1-2001.10 每月月末上正指数序列进行拟合。 图 1:导入数据 图 2:绘制曲线图 可以看出序列不是线性上升,而是曲线上升,尝试用二次模型拟合序列的发展。 25 图 3:模型参数估计和回归效果评价 因为该模型中 T 的系数不显著,我们去掉该项再进行回归分析。 图 4:新模型参数估计和回归效果评价 26 图 5:新模型的预测效果分析 图 6:原序列和 预测
15、序列值 27 图 7:原序列和预测序列值曲线图 图 8:计算预测误差 28 图 9:对预测误差序列进行单位根检验 拒绝原假设,认为序列没有单位根,为平稳序列,说明模型对长期趋势拟合的效果还不错。 同样,序列与时间之间的关系还有很多中,比如指数曲线、生命曲线、龚柏茨曲线等等,其回归模型的建立、参数估计等方法与回归分析同,这里不再详细叙述。 29 (二) 平滑法 除了趋势拟合外,平滑法也是消除短期随机波动反应长期趋势的方法,而其平滑法可以追踪数据的新变化。平滑法主要有移动平均方法和指数平滑法两种,这里主要介绍指数平滑方法。 例 3:对北京市 1950-1998 年城乡居民定期储蓄所占比例序列进行平滑。 图 1:打开序列,进行指数平滑分析 图 2:系统自动给定平滑系数趋势 给定方法为选择使残差平方和最小的平滑系数,该例中平滑系数去 0.53,超过 0.5 用一次平滑效果不太好 30 图 3:平滑前后序列曲线图 图 4:用二次平滑修匀原序列 可以看出,平滑系数为 0.134,平均差为 4.067708,修匀或者趋势预测效果不错。