收藏 分享(赏)

计量经济学 一元线性回归模型的参数估计.ppt

上传人:kpmy5893 文档编号:4915836 上传时间:2019-01-22 格式:PPT 页数:26 大小:773.50KB
下载 相关 举报
计量经济学  一元线性回归模型的参数估计.ppt_第1页
第1页 / 共26页
计量经济学  一元线性回归模型的参数估计.ppt_第2页
第2页 / 共26页
计量经济学  一元线性回归模型的参数估计.ppt_第3页
第3页 / 共26页
计量经济学  一元线性回归模型的参数估计.ppt_第4页
第4页 / 共26页
计量经济学  一元线性回归模型的参数估计.ppt_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、2.3 一元线性回归模型的参数估计,一、参数的普通最小二乘估计(OLS) 二、参数估计的最大似然法(ML) 三、最小二乘估计量的性质 四、估计量的概率分布及随机干扰项方差 的估计,一、参数的普通最小二乘估计(OLS),给定一组样本观测值(Xi, Yi)(i=1,2,n)要求样本回归函数尽可能好地拟合这组值. 普通最小二乘法(Ordinary least squares, OLS)给出的判断标准是:二者之差的平方和,最小。,方程组(*)称为正规方程组(normal equations)。,记,上述参数估计量可以写成:,称为OLS估计量的离差形式(deviation form)。 由于估计结果是通

2、过最小二乘法得到的,故称为普通最小二乘估计量(ordinary least squares estimators)。,顺便指出 ,记,则有,可得,(*)式也称为样本回归函数的离差形式。,(*),注意:在计量经济学中,往往以小写字母表示对均值的离差。,二、参数估计的最大似然法(ML),1、最大似然法,最大似然法(Maximum Likelihood,ML),也称最大或然法,是不同于最小二乘法的另一种参数估计方法,是从最大或然原理出发发展起来的其它估计方法的基础。 基本原理:当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大。 ML必须已知随机项

3、的分布。,2、估计步骤,Yi的分布,Yi的概率函数,Y的所有样本观测值的联合概率似然函数,对数似然函数,对数似然函数极大化的一阶条件,结构参数的ML估计量,3、讨论,在满足一系列基本假设的情况下,模型结构参数的最大似然估计量与普通最小二乘估计量是相同的。 但是,分布参数的估计结果不同。,例2.2.1:在上述家庭可支配收入-消费支出例中,对于所抽出的一组样本数,参数估计的计算可通过下面的表2.2.1进行。,因此,由该样本估计的回归方程为:,三、最小二乘估计量的性质,1、概述,当模型参数估计出后,需考虑参数估计值的精度,即是否能代表总体参数的真值,或者说需考察参数估计量的统计性质。 准则: 线性性

4、(linear),即它是否是另一随机变量的线性函数; 无偏性(unbiased),即它的均值或期望值是否等于总体的真实值; 有效性(efficient),即它是否在所有线性无偏估计量中具有最小方差。 这三个准则也称作估计量的小样本性质。拥有这类性质的估计量称为最佳线性无偏估计量(best liner unbiased estimator, BLUE)。,(4)渐近无偏性,即样本容量趋于无穷大时,是否它的均值序列趋于总体真值; (5)一致性,即样本容量趋于无穷大时,它是否依概率收敛于总体的真值; (6)渐近有效性,即样本容量趋于无穷大时,是否它在所有的一致估计量中具有最小的渐近方差。,当不满足小

5、样本性质时,需进一步考察估计量的大样本或渐近性质:,2、高斯马尔可夫定理(Gauss-Markov theorem),高斯马尔可夫定理(Gauss-Markov theorem) 在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量。,证:,易知,故,同样地,容易得出,(2)证明最小方差性,其中,ci=ki+di,di为不全为零的常数 则容易证明,普通最小二乘估计量(ordinary least Squares Estimators)称为最佳线性无偏估计量(best linear unbiased estimator, BLUE),四、参数估计量的概率分布及随机干扰项方差的估计,2、随机误差项的方差2的估计,由于随机项i不可观测,只能从i的估计残差ei出发,对总体方差进行估计。,2又称为总体方差。,可以证明,2的最小二乘估计量为,它是关于2的无偏估计量。,在最大似然估计法中,,2的最大似然估计量不具无偏性,但却具有一致性。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高等教育 > 理学

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报