收藏 分享(赏)

粉末冶金学第二章.ppt

上传人:11xg27ws 文档编号:4894332 上传时间:2019-01-20 格式:PPT 页数:47 大小:1.49MB
下载 相关 举报
粉末冶金学第二章.ppt_第1页
第1页 / 共47页
粉末冶金学第二章.ppt_第2页
第2页 / 共47页
粉末冶金学第二章.ppt_第3页
第3页 / 共47页
粉末冶金学第二章.ppt_第4页
第4页 / 共47页
粉末冶金学第二章.ppt_第5页
第5页 / 共47页
点击查看更多>>
资源描述

1、第二章 粉末的性能及其测定 Powder Characterizationg and testing,第二章粉末的性能及其测定,1.粉末 (1)粉末体固态物质按分散程度分为致密体、粉末体和胶体。固体(致密体):一种晶粒的集合体。粒度1mm粉末(粉末体):由大量颗粒及颗粒之间的空隙所构成的集合体。粒 度介于0.1 m1mm。特点是颗粒之间有空隙,且连接面少,面上的原子键不能形成强的键力,没有固定形状,具有与液体相似的流动性,但由于移动时有摩擦,流动性有限。胶体:粒度0.1 m,第二章粉末的性能及其测定,(2)粉末颗粒粉末颗粒指粉末中能分开并独立存在的最小实体。 金属粉末的一个 颗粒有多晶体(由很

2、多小晶粒组成)和单晶体,具体由生产方法决定。,图2-1颗粒示意图 a 单颗粒;b聚集颗粒(二次颗粒) c 晶粒; a 一次颗粒,第二章粉末的性能及其测定,2.取样粉末冶金生产过程中,粉末以kg或t来计量,而检测所需样品只有几g 或几mg,其性能要代表该批粉末的性能。取样标准:国际:ASTM(American Standard of testing Manual)标准中国:GB5314-85取样方法:a.如整批粉末装在一个大型容器中,并通过一个孔口连续流出,从粉 末流的横截面上取3次样,一次在装料容器装满一半时,第二次是大容器 中剩一半时,第三次是最后一个装料容器一半满时,将3次样品混合。b.按

3、表2-1进行c.Thieves仪器,第二章粉末的性能及其测定,表2-1取样参考表,图2-2插入式取样器 (a)松散粉末;(b)流动粉末,图2-3分样器,第二章粉末的性能及其测定,3.化学检验化学检验是检测粉末中金属和杂质的含量,采用四分法或滑槽式分样器 制样后进行,检测执行标准是:国际:ASTM(American Standard of testing Manual)标准中国:GB5314-85杂质来源:a. 与主金属结合形成固溶体或化合物的金属或非金属;b. 机械夹杂(SiO2、Al2O3、硅酸盐、难熔金属碳化物等酸不溶物);c. 粉末表面吸附的氧、水蒸气、氮、二氧化碳等;d. 制粉工艺带入

4、的杂质(氢、碳等)。,第二章粉末的性能及其测定,a.氢损测定定义:把金属粉末混合后,在氢气流中煅烧足够长的时间,粉末中的氧 被还原成水蒸气,某些元素(C、S)与氢生成挥发性化合物与挥发金属 (Zn、Cd、Pb)一同排出,然后测得金属粉末质量的损失。此时的氢损值接近粉末中可测的氧含量。如果在实验条件下,还存在没 有被氢还原的氧化物(Al3O2、CaO等),则氢损值低于实际氧含量;如果 存在与氢形成挥发性化合物的元素(C、S)或存在挥发金属(Zn、Cd、 Pb)时,则氢损值高于实际氧含量。 煅烧时间: Fe粉100010501h;Cu粉875 0.5h,第二章粉末的性能及其测定,A粉末加烧舟的质量

5、; B煅烧后残留物加烧舟的质量; C烧舟的质量。,表2-2氢损实验的还原温度和时间,第二章粉末的性能及其测定,b.滴定法滴定法是在氢损法的基础上进行了修改,该法避免测定C、S或挥发 金属,只测加热的氢气流产生的水蒸气量。测定过程:采用一个较小的、单独用途的石墨坩埚,在2000温度下 熔化样品,并用惰性气体保护,样品中的氧以CO形式释放出来,用红外 线吸收法测定氧。或氧被转换成CO2,通过热导率差异来测定。 c.酸不溶物法流程:试样无机酸溶解过滤不溶物沉淀煅烧沉淀称重计算酸不溶物含量(不包括挥发的不溶物)无机酸:不同粉末用不同酸(铁粉用盐酸,铜粉用硝酸)不溶物:硅酸盐、氧化铝、泥土、难熔金属等不

6、溶物来源:原料、炉衬、燃料,第二章粉末的性能及其测定,4.粉末性能的测定(1)粉末颗粒形状生产方法不同,粉末形状不同。粉末形状分类执行国际标准。,表2-3颗粒形状与生产方法的关系,第二章粉末的性能及其测定,图2-5粉末颗粒形状,第二章粉末的性能及其测定,图2-5粉末颗粒形状,第二章粉末的性能及其测定,(2)粉末粒度粒度:球形粉用直径表示;不规则形粉取决于测量方法测定方法 筛分析法 显微筛分法 罗勒分析仪 空气粉尘粒度测定仪 光和X射线比浊测定仪 光遮蔽粒度测定仪 激光散射粒度测定仪,第二章粉末的性能及其测定,a.筛分析法粉末借助筛网的振动通过网孔,用筛网的孔定义粒度,如是针 状颗粒,直径比网孔

7、小,按长度可通过的网孔计算粒度。筛分设备:震筛机、试验筛筛网目数:其中a网孔尺寸;b丝径。,第二章粉末的性能及其测定,b.沉降分析法通过测量粉末颗粒在某一分散介质中的沉降速度来定义粒度。球形和 不规则形粉末具有相同的沉降速度,实际上测的是平均粒度。式中:v沉降速度;d 粉末颗粒直径;粉末密度;F 介质密度;介质粘度。,第二章粉末的性能及其测定,c.沉降天平法天平一端的金属吊盘吊在装满粉末悬浮液的玻璃沉降管中,同一粒径的粉末从距离沉降盘为H的液面自由降落,经过t1时间后,所有颗粒同时到达盘上,根据沉降公式可计算出粒径。式中h经过时间t后颗粒运动距离。,图2-5沉降天平原理图,图2-6一齐沉降法,

8、第二章粉末的性能及其测定,d.比浊仪测量速度快,可测最细粒度0.1m,避免了天平法沉降盘的震动缺点。,图2-6比浊仪结构示意图,第二章粉末的性能及其测定,图2-6比浊仪测量粒度系统图,第二章粉末的性能及其测定,比浊仪测量原理:图为三种颗粒相继沉降的四种状态,x为光透过的水准 面距液面的深度,透射光强度增强为I 。经过时间t1后,状态a变到b,假 设D1颗粒全部沉降到高度x以下,透射光强度从Ia变为Ib,经过时间t2后, D2颗粒全部沉降到x以下,透射光强度增强为Ic,经过时间t3后,三种颗 粒全部沉降到x以下,透射光强度为I0。根据下列公式可计算粒度。式中I 。透过分散介质的光强度; Ia、

9、Ib、 Ic透过悬浮液状态a、b、c时的光强度; q与颗粒的消光系数、形状因子和仪器常数有光的因子。,图2-6比浊仪测量粒度原理图,第二章粉末的性能及其测定,e.X 光比浊仪采用X 光作为入射光源,可测0.11m细颗粒,避免了细颗粒组分 的散射效应,并可测得悬浮液的颗粒浓度。测量原理:设有一矩形沉降槽,其中悬浮液的颗粒浓度开始各处均 匀,记作(x,0),经过沉降时间t,在沉降高度x处,悬浮液的颗粒浓度 变为(x, t),粒度小于Dt的颗粒累积质量百分数为:,第二章粉末的性能及其测定,(3)粒度分布通常用粒径表示粉末颗粒的大小称为粒度,由于组成粉末体的无数 粉末颗粒不属于同一粒径,因此,用不同粒

10、径的颗粒占全部粉末的百分 含量来表示粉末大小状况,称为粒度分布或粒度组成。粒度指单颗粒而言,粒度分布则指粉末体。频度(基准):各级颗粒的个数百分率,f=n/n100%个数频度分布:以每一粒径间隔内的颗粒数占全部颗粒总数中的个数表示 质量频度分布:以每一粒径间隔内的颗粒总质量占全部颗粒质量总和的多少表示,第二章粉末的性能及其测定,长度频度分布:以每一粒径间隔内的颗粒总长度占全部颗粒长度总和的多少表示面积频度分布:以每一粒径间隔内的颗粒总面积占全部颗粒面积总和的多少表示 累积个数百分数:包括某一级在内的小于该级的颗粒数占全部粉末数的百分含量 累积质量百分数:包括某一级在内的小于该级的颗粒总质量占全

11、部粉末质量总和的百分含量,第二章粉末的性能及其测定,表2-5粒度分布统计计算表,第二章粉末的性能及其测定,第二章粉末的性能及其测定,第二章粉末的性能及其测定,频度分布曲线:按颗粒数与颗粒频度对平 粒径所作的粒度分布曲线,图2-6频度分布曲线,第二章粉末的性能及其测定,方框式分布图: 以各粒级间隔的横坐标长为底边; 相应的频度%为高。,图2-6方框式分布图 (a)电镜d平=1.45m; (b)光学镜d平=2.13m,第二章粉末的性能及其测定,“负”累积分布曲线:图2-7所示,为按小于某一级(包括 该粒级)的颗粒数百分含量进行累计和 作图。 “正”累积分布曲线:按大于某一级(包括该粒级) 的颗粒数

12、百分含量进行累计和作图, 则得到与图2-7对称的另一条曲线。,图2-7“负”累积分布曲线,第二章粉末的性能及其测定,a.沉降天平法 天平一端的金属吊盘在装满粉末悬浮液的玻璃沉降管中,粉末从不同 高度以不同速度逐渐落在盘上,自动机构使天平随时恢复平衡。测量并 记录沉降盘上粉末的累积质量随时间的变化,可计算粉末的粒度组成。,图2-5沉降天平原理图,第二章粉末的性能及其测定,天平一端的金属吊盘吊在装满粉末悬浮液的玻璃沉降管中。(a)同 一粒径的粉末从距离沉降盘为H的液面自由降落,经过t1时间后,所有颗 粒同时到达盘上。(b)粉末有三种粒径,沉降相同高度H所需时间分别为 t1 、t2 、t3,沉降的粉

13、末质量分别为w1、w2、w3。(c)粉末具有连续分布的粒径,得到光滑曲线。,图2-6一齐沉降法,第二章粉末的性能及其测定,b.光扫描比浊法测量原理:在固定时间t内,如果测得沉降槽中不同高度的悬浊液浓度差,便可求出悬浊液中颗粒的粒度组成。式中x沉降高度;Ht时间内记录纸走过的距离。 试验时,只要由公式计算出最大沉降 高度所对应的最大粒度后,即可划分 出粒度等级。,图2-8光透过不同高度的悬浮液,第二章粉末的性能及其测定,c.陶析法颗粒在流动介质(气体或液体)中发生非自然沉降而分级。气体陶析 即风选,液体陶析称为水力分级。 陶析原理:流体逆着粉末向上运动,粉末按颗粒沉降速度大于或小于流 体线速度而

14、彼此分开。,图2-9水力分级器原理 1原液;2溢流(细粉);3沉降区; 4水;5分级区:6沉液(粗粉),第二章粉末的性能及其测定,(4)粉末的比表面单位质量粉末的表面积,即1kg或1g粉末所具有的总表面积。不同形状粉末比表面积不同,相同(平均)直径的粉末分两类计算: a.球形粉末:b.不规则形粉末:c.已知粉末粒度分布:式中 形状因子; d1、d2 粒度;W1、W2与d对应的质量百分数;Y1比最小粒度d1还小的颗粒累积质量百分数;0比最小粒度d1还小的粉末的比表面。,第二章粉末的性能及其测定,a.气体吸附法(BET)利用气体在固体表面的物理吸附测定物质的比表面。 吸附原理:测量吸附在固体表面上

15、气体单分子层的质量或体积,再由气体分子的横截面积计算1g物质的总表面积,即得壳比表面。气体吸附法测得的比表面既包括外表面,也包括内部孔隙表面。,第二章粉末的性能及其测定,图2-10BET装置原理 1、2、3玻璃阀;4水银压力计;5试样管;6低温瓶(液氮); 7温度计;8恒温水套;9量气球;10汞瓶,第二章粉末的性能及其测定,b.透过法液体透过法:适用于粗粉末或孔隙较大的多孔性固体;气体透过法:通过测量气体透过粉末层(床)的透过率计算粉末比表 面和平均粒度。气体透过法测的是粉末的外表面,不包括内部孔隙的表 面,是测定粉末的重要工业方法。透过率:在给定时间和压力下,透过一定截面和厚度粉末床的气体体

16、 积。比表面计算公式:式中P在厚度为的粉末床两端的压力差;g重力加速度;A粉末层横截面积;孔隙度;Kc柯青常数;Q0单位时间通过的流量;L粉末床厚度;流体粘度,第二章粉末的性能及其测定,(5)松装密度松装密度指粉末试样自然地充满规定的容器时,单位容积的粉末质量。测量方法:用手指堵住标准漏斗小孔,将粉末倒入其中,量杯容积为 250.05cm3,粉末自由通过漏斗的小孔流入量杯中,充满量杯后刮 平,按公式计算松装密度:式中m粉末试样质量;V量杯容积( 25cm3)。 测量装置:霍尔流量计 小孔孔径:2.5mm或5mm,第二章粉末的性能及其测定,图2-9霍尔流量计,图2-9松装密度测量装置,适用于不能

17、自由通过5mm漏斗孔径 和用震动漏斗法易改变特性的粉末,第二章粉末的性能及其测定,图2-9震动漏斗装置示意图 1漏斗;2滑块;3定位块;4量杯; 5杯座;6调节螺钉;7底座;8开关; 9震动器支架;10震动调节钮;11震动器,震动漏斗适用于不能自由 流过5mm漏斗孔的金属粉末,第二章粉末的性能及其测定,(6)振实密度振实密度指将粉末装入振动容器中,在规定条件下经过振实后所测 得的粉末密度。振实密度比松装密度高2050%。 测量方法:将定量粉末装入振动容器中,在规定条件下进行振动,直到 粉末体积不能再小,测得粉末的振实体积,然后计算振实密度。式中m粉末质量;V粉末的振实体积。,第二章粉末的性能及

18、其测定,图2-3振实密度测量装置示意图 1量筒;2量筒支座;3定向滑杆; 4轴套;5凸轮;6砧板,第二章粉末的性能及其测定,(6)流动性粉末的流动性指50g粉末从标准流速漏斗流出所需的时间,单位为 s/50g,其倒数是单位时间流出粉末的质量,称为流速。 测量方法:先用手堵住漏斗底部小孔,把称量好的50g粉末倒入漏斗 中,拿开手指粉末开始流出时计时,漏斗中粉末一流完,停止计时,记 录全部粉末流完的时间。连续测三次取其算术平均值即为粉末的流动性。 测量装置:同密度测量,第二章粉末的性能及其测定,(7)压缩性压缩性指粉末在规定的压制条件下被压紧的能力;用规定的单位压力 下粉末所能达到的坯块密度表示,

19、即:样品压模:硬质合金 样品尺寸: 的矩形或1的圆棒 润滑方法:a.模壁润滑:用润滑剂擦涂模腔、上下模冲,或将润滑剂注满模腔,再立 即倒出,挥发后在模腔表面留下一层均匀的润滑剂薄膜;b.粉末润滑:将润滑剂与粉末混合均匀后压制。 压缩性测定:将粉末装入标准的封闭模具中,采用单轴双向压制,测量坯块尺寸并称其重量,即可计算出坯块密度。,第二章粉末的性能及其测定,(8)成形性成形性指粉末压制后,坯块保持原有形状的能力。用坯块横向断裂强 度表示。样品尺寸:成形性测定:将压制好的样品在特定条件下作横向弯曲试验,样品断裂 时施加的力对应的强度,可根据公式计算:式中S坯块强度;P断裂所需的力;L夹具跨度;t试

20、样厚度;w试样宽度。,第二章粉末的性能及其测定,(9)尺寸变化尺寸变化指粉末在压制成形过程中发生的弹性后效和坯块在烧结过程 中发生的尺寸变化。 影响因素:粉末特性、坯块密度、炉子类型、烧结温度、时间、保护气 氛、加热速率、冷却速率等 测量方法:采用比较法,将粉末压制成一个矩形截面样品,与用相同粉 末压制成的标准棒一起在实际生产的条件下烧结,然后比较两者的尺寸 差,即可确定粉末、压制工艺条件是否合理。 样品尺寸:,第二章粉末的性能及其测定,(10)有效密度粉末的理论密度不能代表粉末的真实密度,因为粉末总是有孔的,与 颗粒外表面连同的孔叫开孔或半开孔(一端连同),颗粒内不与外表面连 同的潜孔叫闭孔

21、,计算粉末密度时是否计入孔隙体积会有不同的值。a.真密度:粉末质量与除去开孔和闭孔体积的粉末体积的比值,是材料的 理论密度; b.假密度(有效密度):粉末质量与包括闭孔在内的粉末体积的比值,假 设没有开孔; c.表观密度:粉末质量与包括开孔和闭孔在内的粉末体积的比值,是粉末 的真实密度,如松装密度、震实密度等。,第二章粉末的性能及其测定,有效密度的测量:干燥后的粉末装入规定容积V 的比重瓶,约占瓶容积 的1/31/2,连瓶一起称重。然后加入液体盖过粉末试样,通过真空除气 使润湿液体充满比重瓶,再次称重。 计算公式:式中m1比重瓶质量;m2比重瓶加粉末试样质量; m3比重瓶加粉末试样和充满液体后的质量; 液体密度。,图2-9比重瓶,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 规范标准 > 工业冶金工业

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报