1、热点九 函数与导数解答题【名师精讲指南篇】来源:学.科.网【高考真题再现】1. (2017 全国 1 理 21)已知函数 2eexxfa.(1)讨论 fx的单调性;(2)若 有两个零点,求 的取值范围.2.(2017 全国 2 理 21)已知函数 ,且 2()lnfaxx()0f(1)求 ;a(2)证明: 存在唯一的极大值点 ,且 ()fx0220e()f3.(2017 全国 3 理 21)已知函数 1lnfxax.(1)若 0fx,求 a的值;学-科网(2)设 m为整数,且对于任意正整数 n, 211+nm ,求 的最小值.4.【2016 全国卷 2 文】已知函数 .lfxxa(1)当 时,
2、求曲线 在 处的切线方程;4ay1,(2)若当 时, ,求 的取值范围.1x0fxa5.【2016 卷 3 理丙】设函数 ,其中 ,记 的最大值为 .()cos2()cos+1)xx0a()fxA(1)求 ;()fx(2)求 ;A(3)证明 2.f( ) 6.【2016 全国卷 2 理】 (1)讨论函数 的单调性,并证明当 时, ; 2()exf0x(2)e0x(2) 证明:当 时,函数 有最小值.设 的最小值为 ,求函数0)a2=(0)xagg()ha的值域.()ha【热点深度剖析】近三年的高考试题基本上形成了一个模式,第一问求解函数的解析式,以切线方程、极值点或者最值、单调区间等为背景得到
3、方 程进而确定解析式,或者给出解析式探索函数的最值、极值、单调区间等问题,较为简单;第二问均为和不等式相联系,考查不等式恒成立问题、证明不等式等综合问题,难 度较大. 从近几年的高考试题来看,利用导数来研究函数的单调性和极值问题已成为炙手可热的考点,既有小题,也有解答题,小题主要考查利用导数研究函数的单调性和极值,解答题主要考查导数与函数单调性,或方程、不等式的综合应用预测 2018 年高考函数大题以对数函数,指数函数,反比例函数以及一次函数,二次函数中的两个或三个为背景,组合成一个函数,考查利用导数研究函数的单调性与极值及切线,与不等式结合考查恒成立问题,另外极值点偏移问题应引起考生注意【重
4、点知识整合】导数的定义:设函数 在 处附近有定义,当自变量在 处有增量 时,则函数1. )(xfy0 0xx相应地有增量 ,如果 时, 与 的比 (也叫函数的平均变()yfx )(00xffyy化率)有极限即 无限趋近于某个常数,我们把这个极限值叫做函数 在 处的导数,记作y )(xf0,即 .0xy000()()limxfxff注意:在定义式中,设 ,则 ,当 趋近于 时, 趋近于 ,因此,导数的定义式可写成00x0x0.000 0()()()li lixo xfxfff导数的几何意义:2.导数 是函数 在点 的处瞬时变化率,它反映的函数 在000()()limxfxff)(xfy0 )(x
5、fy点 处变化的快慢程度. 它的几何意义是曲线 上点( )处的切线的斜率.因此,如果0 )(0xf在点 可导,则曲线 在点( )处的切线方程为 )(xfy0)(xfy)(,0xf 00()()yfxfx注意:“过点 的曲线的切线方程”与“ 在点 处的切线方程 ”是不相同的,后者 必为切点,前者未必是切点.AAA导数的物理意义:3.函数 在点 处的导数 就是物体的运动方程 在点 时刻的瞬时速度 ,即()st00(),st ()st0v0().st4几种常见函数的导数: ( 为常数) ; ( );0C1)(nxQ; ; ; ; ; . xcos)(sinxsin)(lloglaae()xe()ln
6、xa5.求导法则:法则 : ;1()()uxvuxv法则 : , ;2()x()()Cux法则 : .320v6.复合函数的导数:设函数 在点 处有导数 ,函数 在点 的对应点 处有导()ux()xu()yfuxu数 ,则复合函数 在点 x 处也有导数,且 或 uyf yfxx ()fx7.导数与函数的单调性函数 在某个区间内有导数,如果 ,那么函数在这个区间上是增函数,该区间是函数的增1.()fx()0f区间;若 ,那么函数在这个区间上是减函数,该区 间是函数的减区间.02.利用导数研究多项式函数单调性的一般步骤:求 ; 确定 在 内符号;1()fx2()fx,ab若 在 上恒成立,则 在
7、上是增函数;若 在 上恒成立,则30()fx,ab()0fxab在 上是减函数 头htp:/w.xjkygcom126t:/.j()fx,ab8. 导数与函数的极(最)值1.极大值: 一般地,设函数 在点 附近有定义,如果对 附近的所有的点,都有 ,就说 是函数 的一个极大值 ,记作极大值 , 是极大值点.2.极小值:一般地,设函数 在 附近有定义,如果对 附近的所有的点,都有 就说 是函数 的一个极小值,记作 极小值 , 是极小值点.3 .极值:极大值与极小值统称为极值 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值 请注意以下几点:( )极值是一个局部概念 由定义,
8、极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小.( )函数的极值不是唯一的 即一个函数在某区间上或定义域内极 xs 大值或极小值可以不止一个.( )极大值与极小值之间无确定的大小关系 即一个函数的极大值未必大于极小值,如下图所示, 是极大值点, 是极小值点,而 .( )函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.来源:Z。xx。k.Com4.当 在点 连续时,判别 是极大、极小值的方法:若 满足 ,且在 的两侧 的导数异号,则是 的极值点, 是极值,并且如
9、果 在两侧满足“左正右负”,则 是 的极大值点, 是极大值;如果 在 两侧满足“左负右正”,则 是 的极小值点, 是极小值.5.求可导函数 的极值的步骤:确定函数的定义区间,求导数 ; 求方程 的根;用函数的导数为 的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查 在 方程根左右的值的符号,如果左正右负,那么 在这个根处取得极大值;如果左负右正,那么 在这个根处取得极小值;如果左右不改变符号,那么 在这个根处无极值.如果函数在某些点处连续但不可导,也需要考虑这些点是否是极值点 .9.函数的最大值和最小值: 一般地 ,在闭区间 上连续的函数 在上必有最大值与最小值注意: 在开区间 内
10、连续的函数 不一定有最大值与最小值如函数 在 内连续,但没有最大值与最小值;函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的函数 在闭区间 上连续,是 在闭区间上有最大值与最小值的充分条件而非必要条件函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个.10.利用导数求函数的最值步骤:由上面函数 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了设函数 在 上连续,在 内可导,则求在 上的最大值与最小值的步骤如下:求 在 内的极值;将 的各极值与 、 比较得出函数在 上的最值 p.
11、【应试技巧点拨】来源:Zxxk.Com1.利用导数求切线问题中的“在”与“ 过”在解决曲线的切线问题时,利用导数求切线的斜率是非常重要的一类方法.在求解过程中特别注意:曲线在某点处的切线若有则只有一条,曲线过某点的 要切线往往不止一条;切线与曲线的公共点不一定只有一个.因此在审题时应首先判断是“在”还是“ 过”.若“ 在”,利用该点出的导数为直线的斜率,便可直接求解;若“过”,解决问题关键是设切点,利用“ 待定切点法”, 即:设点A(x ,y )是曲线 上的一点,则以 A 为切点的切线方程为yy =f ,再根据题意求出切点.函数的导数在其单调性研究的作用:(1)当函数在一个指定的区间内单调时
12、,需要这个函数的导数在这个区间内不 改变符号(即恒大于或者等于零、恒小于或者等于零), 当函数在一个区间内不单调时,这个函数的导数在这个区间内一定变号,如果导数的图象是连续的曲线,这个导数在这个区间内一定存在变号的零点,可以把问题转化为对函数零点的研究(2)根据函数的导数研究函数的单调性,在函数解析式中若含有字母参数时要进行分类讨论 ,这种分类讨论首先是在函数的定义域内进行,其次要根据函数的导数等于零的点在其定义域内的情况进行,如果这样的点不止一个,则要根据字母参数在不同范围内取值时,导数等于零的根的大小关系进行分类讨论,最后在分类解决问题后要整合一个一般的结论易错提示 在利用“若函数 单调递
13、增,则 ”求参数的范围时,注意不要漏掉“等号”利用导数研究函数的极值与最值:(1)确定定义域(2)求导数 (3)若求极值,则先求方程 的根,再检验 在方程根左、右值的符号,求出极值(当根中有参数时要注意分类讨论根是否在定义域内)若已知极值大小或存在的情况,则转化为已知方程 根的大小或存在情况,从而求解求函数 在 上的最大值与最小值的步骤(1)求函数 在 内的极值;(2)将函数 的各极值与端点处的函数值 比较,其中最大的一个是最大值,最小的一个是最小值.利用导数处理恒成立问题不等式在某区间的恒成立问题,可以转化为求函数在区间上的最值问题来解决,函数的最值问题的求解,利用求导分析函数单调性是常规途
14、径,例如: 为增函数(为减函数). 在区间 上是增函数 在 上恒成立;在区间 上为减函数 在上恒成立.利用导数,如何解决函数与不等式大题在高考题的大题中,每年都要设计一道函数大题. 在函数的解答题中有一类是研究不等式或是研究方程根的情况,基本的题目类型是研究在一个区间上恒成立的不等式(实际上就是证明这个不等式), 研究不等式在一个区间上成立时不等式的某个参数的取值范围,研究含有指数式、对数式、三角函数式等超越式的方程在某个区间上的根的个数等,这些问题依据基础初等函数的知识已经无能为力,就需要根据导数的方法进行解决使用导数的方法研究不等式和方程的基本思路是构造函数,通过导数的方法研究这个函数的单
15、调性、极值和特殊点的函数值,根据函数的性质推断不等式成立的情况以及方程实根的个数因为导数的引入,为函数问题的解决提供了操作工具.因此入手大家比较清楚,但是深入解决函数与不等式相结合的题目时,往往一筹莫展.原因是找不到两者的结合点,不清楚解决技巧.解题技巧总结如下(1)树立服务意识:所谓“服务意识”是指利用给定函数的某些性质(一般第一问先让解决出来),如函数的单调性、最值等,服务于第二问要证明的不等式.(2)强化变形技巧:所谓“强化变形技巧”是指对于给出的不等式直接证明无法下手,可考虑对不等式进行必要的等价变形后,再去证明.例如采用两边取对数(指数),移项通分等等.要注意变形的方向:因为要利用函
16、数的性质,力求变形后不等式一边需要出现函数关系式.(3)巧妙构造函数:所谓“巧妙构造函数”是 指根据不等式的结构特征,构造函数,利用函数的最值进行解决.在构造函数的时候灵活多样,注意积累经验,体现一个“巧妙”.【考场经验分享】1利用导数讨论函数的单调性需注意的几个问题(1)确定函数的定义域,解决问题的过程中,只能在函数的定义域内 ,通过讨论导数的符号,来判断函数的单调区间(2)在对函数划分单调区间时,除了必须确定使导数等于 0 的点外,还要注意定义区间内的不连续点或不可导点(3)注意 在某一区间内 (或 )是函数 在该区间上为增(或减) 函数的充分条件2可导函数的极值(1)极值是一个局部性概念
17、,一个函数在其定义域内可以有许多个极大值和极小值 ,在某一点的极小值也可能大于另一点的极大值,也就是说极大值与极小值没有必然的大小关系(2)若 在 内有极值,那么 在 内绝不是单调函数,即在某区间上单调增或减的函数没有极值3.如果一个函数单调性相同的区间不止一个,这些区间之间不能用“” 连接,只能用逗号或“和”字隔开,如把增区间写为“( , )(1,)” 是不正确的,因为“( , )(1,)”不是一个区间,该函数在(, )23 23 23(1,)上不是单调递增的利用导数解决不等式问题的类型:(1)不等式恒成立:基本思路就是转化为求函数的最值或函数值域的端点值问题(2)比较两个数的大小:一般的解
18、决思路是把两个函数作差后构造一个新函数,通过研究这个函数的函数值与零的大小确定所比较的两个函数的大小(3)证明不等式:对于只含有一个变量的不等式都可以通过构造函数,然后利用函数的单调性和极值解决.函数的解答题,一般放在最后一道题的位置,难度较大,尤其是第二问,与不等式联系,是拉开分数的试题,故关于此题,要端正好心态,对于第一问一般不难,是学生必须带分的部分,做题要仔细,特别是与单调区间有关,首先要考虑定义域,另外,求导要准确,这是基础;对于第二问,往往需要通过不等式等价转化,构造函数,通过求导研究函数的单调性最值,然后达到证明不等式的基本模式.【名题精选练兵篇】1 【四川省绵阳市 2018 届
19、高三第三次诊断性考试】已知函数 的两个极值点满足 ,且 ,其中 为自然对数的底数.()求实数 的取值范围;()求 的取值范围.来源:Z#xx#k.Com2 【河北省武邑中学 2018 届高三下学期期中】已知函数 .(1)设 ,求函数 的单调区间;(2)若 ,设 为函数 图象上不同的两点,且满足,设线段 中点的横坐标为 ,证明: .3 【滨海新区七所重点学校 2018 届高三毕业班联考】已知函数 , , (1)若 ,且 在其定义域上存在单调递减区间,求实数 的取值范围;(2)设函数 , ,若 恒成立,求实数 的取值范围;(3)设函数 的图象 与函数 的图象 交于点、 ,过线段 的中点作 轴的垂线
20、分别交, 于点 、 ,证明: 在点处的切线与 在点 处的切线不平行.4 【辽宁省鞍山市 2017 届高三下学期第一次质量检测】已知函数 ,其中()若函数 在 处的切线与直线 垂直,求的值;()讨论函数 极值点的个数,并说明理由;()若 , 恒成立,求 的取值范围.5 【湖南省娄底市 2017 届高考仿真模拟(二模) 】已知函数 , .()证明: ,直线 都不是曲线 的切线;()若 ,使 成立,求实数 的取值范围.6 【天津市十二重点中学 2017 届高三毕业班联考(一) 】设函数 , = .()求函数 的单调区间;()若函数 有两个零点 .(1)求满足条件的最小正整数 的值;(2)求证: .7
21、 【河北省唐山市 2016-2017 学年度高三年级第二次模拟】已知函数 的图象与轴相切, ()求证: ;()若 ,求证: 8 【陕西省汉中市 2017 届高三下学期第二次教学质量检测(4 月模拟) 】已知函数来源:学()证明:当 时,函数 有最小值,设 最小值为,求函数 的值域.10 【2017 届湖南省长沙市高三下学期统一模拟】已知函数 , 为实常数()设 ,当 时,求函数 的单调区间;()当 时,直线 、 与函数 、 的图象一共有四个不同的交点,且以此四点为顶点的四边形恰为平行四边形求证: 11 【湖北省六校联合体 2017 届高三 4 月联考】设函数 , 的图象在点处的切线与直线 平行
22、.(1)求 的值;(2)若函数 ( ),且 在区间 上是单调函数,求实数 的取值范围.12 【河北省武邑 2017 届高三下学期期中】已知函数 , ( 为常数).(1)函数 的图象在点 处的切线与函数 的图象相切,求实数 的值;(2)若函数 在定义域上存在单调减区间,求实数 的取值范围;(3)若 , ,且 ,都有 成立,求实数的取值范围.【名师原创测试篇】1.已知曲线 在点 处的切线与直线 平行, (1)求 的值;(2)求证: 2已知函数 (a R), () 求函数 的单调区间;()已知当 时, ,求证:当 时,不等式 成立3. 已知函数 为奇函数.()若 ,求函数 的解析式;()当 时,不等式 在 上恒成立,求实数 的最小值;()当 时,求证:函数 在 上至多一个零点.4. 已知函数 .学科网(1)当 时,求函数 的单调区间;(2)若函数 在 上的最小值是 ,求 的值. 5. 已知函数 ( ) ()若函数 在定义域内单调递增,求实数 的取值范围;()设 , , ( )是 图象上的任 意两点,若 ,使得 ,求证: 6. 设函数 .()若函数 在定义域上为增函数,求实数 的取值范围;()在()的条件下,若函数 , 使得 成立,求实数的取值范围.