1、图形的全等教案一、学习目标:1.了解全等图形、全等多边形、全等三角形. m2.平移、旋转、翻折等图形基本运动对全等图形的影响.3.掌握全等多边形性质与识别方法,全等三角形的性质.4.简单应用全等多边形性质、全等三角形的性质解决实际问题.二、学习重点:全等多边形的性质与识别方法;全等三角形的性质应用.三、学习难点:平移、旋转、翻折等图形基本运动对全等图形的影响.四、学习设计:(一)引入观察教材 P73 图 3-21 几组图形。(二)学习过程阅读课本 P73-75 填空:_两个图形就是全等图形。 全等图形的_和_都相同。下面,我们看看图形的运动对全等图形有何影响?活动 请同学们在方格纸中任意画一个
2、多边形,先将这个多边形沿某一方向平移一定距离(与原图形无重叠);再将原多边形绕形外一点顺时针(或逆时针)旋转一定角度(与原图形无重叠);然后将原图形沿形外某格线对称;最后将这些图形剪下来,将其叠合.你能发现什么?通过这个活动过程,说明了什么问题?说明图形经过平移、旋转、翻折的图形运动,位置发生了变化,但形状和大小却没有改变,图形运动前后的两个图形是全等的;反过来,也就是说,两个全等的图形经过图形运动一定能重合.请你说说什么是全等多边形?什么是全等多边形的对应顶点、对应角、对应边?你认为全等多边形有何特征?全等多边形对应边、对应角分别相等.如图 1,四边形 ABCD 与四边形EFGH 全等,可记
3、为四边形 ABCD四边形EFGH ,请指出对应顶点、对应角、对应边.全等多边形的识别方法:如果两个多边形对应边、对应角分别相等,那么这两个多边形全等.三角形是特殊的多边形,所以,全等三角形的对应边、对应角分别相等;如果两个三角形的_、_分别相等,那么这两个多边形全等.例 1 如图 2,已知将ABC 绕其顶点 A顺时针方向旋转20后得到ADE. (1)ABC 与ADE 的关系如何?(2)求BAD 的度数.分析:将ABC 绕其顶点 A 旋转得到ADE,故ADE 是由ABC 旋转得到的,若将ADE 逆时针方向旋转 20,则能与ABC 重合,所以ABC 与ADE 是全等的. 由学生自主思考、分析解答.探索:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?并画出这些位置关系的代表性图形.