1、第一章空间几何体测试题(一)一、选择题:1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( )A.圆柱 B.圆锥 C.球体 D.圆柱、圆锥、球体的组合体考查目的:考查球体的几何特征.答案:C.解析:当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面2.下面的图形可以构成正方体的是( ).考查目的:考查正方体的几何特征和空间想象能力.答案:C.解析:能够围成封闭且没有重合的面.3.如图所示,该直观图表示的平面图形为( ).A.钝角三角形 B.锐角三角形 C.直角三角形 D.正三角形考查目的:考查斜二测画法作图的性质.答案:C.解析:与斜坐标系的
2、坐标轴平行的边还原之后仍与直角坐标系中坐标轴重合,所以原三角形为直角三角形. 4.(2010 安徽文)一个几何体的三视图如图,该几何体的表面积是( ).A.372 B.360 C.292 D.280考查目的:考查根据三视图计算组合体的表面积.答案:B.解析:该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的 4 个侧面积之和 .5.(2012 陕西文)将正方体(如图 1 所示)截去两个三棱锥,得到图 2 所示的几何体,该几何体的左视图为( ).考查目的:考查几何体的三视图的画法.答案:B.解析:根据空间几何体的三视图的概念易知左视图 是实线 是虚线.6.(2011 江西
3、文)将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( ).考查目的:考查由组合体直观图作三视图.答案:D.解析:选根据正投影的性质,结合左视图的要求知,长方体体对角线投到了侧面,成了侧面的面对角线,结合选项即得答案为 D.二、填空题:7.已知棱台的上下底面面积分别为 4,16,高为 3,则该棱台的体积为 .考查目的:考查棱台体积的计算.答案:28.解析: .8. 已知 ABCD 为等腰梯形,两底边为 AB,CD 且 ,绕 AB 所在的直线旋转一周所得的几何体中是由 、 、 的几何体构成的组合体.考查目的:考查旋转体的概念、简单组合体的特征.答案:圆锥、圆柱、圆锥解析:根据
4、旋转体的定义可知,CD 绕 AB 所在的直线旋转可形成一个圆柱,AD,BC 绕AB 所在的直线旋转可形成一个圆锥.9.(2012 江苏)如图,在长方体 中, , ,则四棱锥 的体积为 .考查目的:考查正投影与空间想象能力.答案:6.解析:长方体底面 是正方形,在 中, cm, 边上的高是cm(它也是 中 上的高),四棱锥 的体积为.10.(2010 湖北文)圆柱形容器内盛有高度为 3cm 的水,若放入三个相同的珠(球的半么与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图),则球的半径是 cm.考查目的:考查几何体的体积计算和分析组成组合体的各几何体的体体积之间的关系答案:4.解析:设球半径为 ,则由 得 ,解得 .