收藏 分享(赏)

高中数学模块过关专题讲座练习(人教a版必修四):第十一讲《平面向量的数量积》.doc

上传人:无敌 文档编号:452070 上传时间:2018-04-06 格式:DOC 页数:3 大小:289.50KB
下载 相关 举报
高中数学模块过关专题讲座练习(人教a版必修四):第十一讲《平面向量的数量积》.doc_第1页
第1页 / 共3页
高中数学模块过关专题讲座练习(人教a版必修四):第十一讲《平面向量的数量积》.doc_第2页
第2页 / 共3页
高中数学模块过关专题讲座练习(人教a版必修四):第十一讲《平面向量的数量积》.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第十一讲 平面向量的数量积一、知识回顾知识点 1:定义:两个非零向量 与 ,它们的夹角为 ,我们把数量 cos 叫做abab与 的数量积(或内积) ,记作: ,即: = cos (“ ”中间的ab abb“ ”不可以省略,也不可以用“ ”代替。 零向量与任何向量的数量积为零) 。的范围0 90 =90 0 180 的符号知识点 2:向量投影的概念:如图,把 cos ( cos )叫做向量 在 方向上baba( 在 方向上)的投影,记做:OB 1= cos 。数量积的几何意义:ab数量积 等于 的长度 与 在 的方向上的投影 cos 的乘积。aab知识点 3:数量积的性质:设 和 b 都是非零向

2、量,则知识点 4:数量积的运算律:例 2、 (已知 =6, =4, 与 的夹角为 60,求( +2 )( -3 ) ,abaabab变式:(1)( + )2= 2+2 + 2 (2)( + )( - )= 2 2b知识点 5:设两个非零向量 与 ,它们的夹角为 , ,),(),1yxyx则: baa cos b二、典型例题例 1、已知 , ,当 , , 与 的夹角是 60时,分别ababaAbcosB1BO1、 =0 2、 ababb3、当 与 同向时, = ;当 与 反向时,ab = - , 特别地, = 2或 =a已知向量 、 、 和实数 ,则:c(1) = (2) ( ) =( )= (

3、 )b(3) ( + ) = + cc求 。ab例 2、 在 ABC 中, =(2, 3), =(1, k),且 ABC 的一个内角为直角,求 k 值。ABC变式:已知, (1,2)(3,)ab与当 k 为何值时, (1) 3kab与垂直?(2) k与平行吗?平行时它们是同向还是反向?变式:已知向量 a=(-2,-1),b=(,1)若 a 与 b 的夹角为钝角,则 取值范围是多少?例 3、与 a=,4平行的单位向量是_变式:与 垂直的单位向量是_三、课堂练习1、已知| |=5, | |=4, 与 的夹角 =120o, = .baab2.已知| |=2,| |=1, 与 之间的夹角为 ,那么向量

4、 m= -4 的模为 .a33.已知 + =2i-8j, - =-8i+16j,其中 i、j 是 x 轴、y 轴正方向上的单位向量,那么 = .ab4.设 m、n 是两个单位向量,其夹角为 ,求向量 =2m+n 与 =2n-3m 的夹角.ab5.已知| |=1,| |= ,(1)若 ,求 ;(2) 若 、 的夹角为,求| + |;ab2ab ab(3)若 - 与 垂直,求 与 的夹角.四、总结提升1、 = cosabb2、a=(x 1,y1),b(x2,y2),则 ab=(x1,y1)(x2,y2) =x1x2+y1y。五、课后作业1、设 a=(2,1),b=(1,3),求 ab 及 a 与 b 的夹角2.a=(2,3)b-,5则与方向上的投影为_3.已知 、c 与 、 的夹角均为 60,且| |=1,| |=2,|c|=3,则( +2 -c) _ .aabab4、已知 A(1,2) ,B(4,-1),问在 y 轴上找点 C,使ABC90,若能求 C 坐标;若不能,说明理由。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报