收藏 分享(赏)

智能控制_05神经网络1.ppt

上传人:gsy285395 文档编号:4498342 上传时间:2018-12-31 格式:PPT 页数:21 大小:1.20MB
下载 相关 举报
智能控制_05神经网络1.ppt_第1页
第1页 / 共21页
智能控制_05神经网络1.ppt_第2页
第2页 / 共21页
智能控制_05神经网络1.ppt_第3页
第3页 / 共21页
智能控制_05神经网络1.ppt_第4页
第4页 / 共21页
智能控制_05神经网络1.ppt_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、1,智能控制系统,天津大学电气与自动化工程学院,五,天津大学自动化学院,第三章 神经网络控制,天津大学自动化学院,基于人工神经网络的控制简称神经控制。神经网络是由大量人工神经元广泛互联而成的网络,具有很强的自适应性和学习能力、非线性映射能力、鲁棒性和容错能力。1.1 生物神经元模型 人脑大约包含1012个神经元,分成约1000种类型,每个神经元大约与102104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。,1. 神经网络的基本概念,天津大学自动化学院,1. 神经网络的基本概念,树突:接受信息 轴突:发送信息 神经元:控制和信息处理的基本单元,图3-1 生物神经元结构,天津大学自

2、动化学院,1. 神经网络的基本概念,神经元的功能与特性时空整合功能:对不同时间不同突触的输入进行整合 兴奋与抑制状态:输入膜电位 输出 脉冲与电位转换 :数模转换 神经纤维传导速度:1-150m/s 突触延时和不应期:突触的不应期 学习、遗忘和疲劳:突触的传递作用可增强、减弱或饱和,天津大学自动化学院,1.2 人工神经元模型人工神经元是对生物神经元的一种模拟与简化,是一个多输入、单输出的非线性元件。,1. 神经网络的基本概念,图3-2 人工神经元结构模型,天津大学自动化学院,人工神经元输入、输出关系可描述为其中, 是从其他神经元传来的输入信号; 表示从神经元j到神经元i的连接权值; 为阈值;

3、称为激发函数或作用函数。,1. 神经网络的基本概念,天津大学自动化学院,为了方便起见,常把 看成是恒等于1的输入 的权值,则人工神经元的模型可以写为:其中输出激发函数 又称为变换函数,它决定神经元(节点)的输出。该输出为1或0,取决于其输入之和大于或小于内部阈值, 一般具有非线性特性。,1. 神经网络的基本概念,天津大学自动化学院,1. 神经网络的基本概念,图3-3 常见的激发函数,阈值型函数,阈值型函数,饱和型函数,双曲函数,S型函数,高斯函数,天津大学自动化学院,1.3 人工神经网络模型利用人工神经元可以构成各种不同拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。目前已有数十种不同的

4、神经网络模型,其中前馈型网络和反馈型网络是两种典型的结构模型。前馈型神经网络,又称前向网络(Feedforward NN)。神经元分层排列,有输入层、隐层(亦称中间层,可有若干层)和输出层,每一层的神经元只接受前一层神经元的输入。,1. 神经网络的基本概念,天津大学自动化学院,图3-4 前馈型神经网络结构,前馈网络是一种强有力的学习系统,其结构简单而易 于编程;前馈网络是静态非线性映射,通过简单非线性处理单元的复合映射,可获得复杂的非线性处理能力。感知器网络、BP网络,1. 神经网络的基本概念,天津大学自动化学院,图3-5 反馈型神经网络结构,反馈型神经网络(Feedback NN)的结构如图

5、所示。如果总节点(神经元)数为N,那么每个节点有N个输入和一个输出,也就是说,所有节点都是一样的,它们之间都可相互连接。,1. 神经网络的基本概念,天津大学自动化学院,反馈神经网络是一种反馈动力学系统,它需要工作一段时间才能达到稳定。Hopfield神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能。,1. 神经网络的基本概念,1.4 神经网络的学习方法学习方法是体现人工神经网络智能特性的主要标志,离开了学习算法,人工神经网络就失去了自适应、自组织和自学习的能力。神经网络的学习是通过改变权值实现的。,天津大学自动化学院,1. 神经网络的基本概念,有教师学习:网络的输出和期望的输出

6、(即教师信号)进行比较无教师学习:按照一预先设定的规则(如竞争规则)自动调整权值再励学习:行动评价改进,图3-6 神经网络的学习,天津大学自动化学院,Hebb学习规则 两个神经元同时处于激发状态时,它们之间的连接强度将得到加强,这一论述的数学描述被称为Hebb学习规则 。Hebb学习规则是一种无教师的学习方法。,1. 神经网络的基本概念,天津大学自动化学院,Delta()学习规则定义误差准则函数其中 代表期望的输出(教师信号); 是网络的实际输出, 连接权阵的更新规则为,1. 神经网络的基本概念,天津大学自动化学院,学习规则是一种有教师的学习方法。 BP算法是在规则基础上发展起来的。概率式学习

7、 竞争式学习,1. 神经网络的基本概念,天津大学自动化学院,2.1 感知器(Perceptron)特点: 单层神经元。主要用于模式分类。 结构:输入向量 , 为网络输出。,2.前向网络及其主要算法,天津大学自动化学院,分类:当输入向量属于某一类时,该类对应的输出量yp=1,其余输出量yq(q=1p-1,p+1m)= -1 分类是由单个神经元完成的,可以研究其中一个:,2.前向网络及其主要算法,图3-8 单个神经元,天津大学自动化学院,学习算法 随机给定一组初始权值 ,这里 表示在k时刻连接第i个输入量 的权值 。 给定一组输入样本 和期望输出量d(当输入量属于某一类 ,其他类则 ) 计算感知器实际输出,2.前向网络及其主要算法,天津大学自动化学院,修正权值学习速率 太大易震荡,太小则学习太慢。 继续重复学习过程,直到权值稳定为止。 选取另外一组样本继续学习,直到对所有样本都稳定为止。,2.前向网络及其主要算法,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 网络科技 > 网络与通信

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报