1、学优中考网 专题七:数学思想孙法光一、考点综述考点内容:整体思想、数形结合思想、化归思想、换元思想、分类思想考纲要求:要求学生会建立数学思想,掌握思想方法,在解题时可以使学生,寻求出已知和未知的联系,提高学生分析问题的能力,从而使学习的思维品质和能力有所提高。数学思想方法的渗透、展现是借助于数学知识、技能这些载体的,在每年的中考中都有考查学生数学思想的题目出现。考查方式及分值:思想方法的考查在填空、解答、选择题中都有出现,常常和各种知识综合起来作为压轴题目出现。备考策略:数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,整体思想、数形结合思想、化
2、归思想、换元思想、分类思想,在平时的学习中要注意发掘和运用这些数学思想方法。二、例题精析1、整体思想整体思想方法是指用“集成”的眼光,把某些式子或图形看成一个整体,把握已知和所求之间的关联,进行有目的、有意识的整体处理来解决问题的方法.利用整体思想往往能够避免局部思考带来的困惑.例 1 解方程组 2002x+2003y=20012003x+2002y=2004 )解题思路:如果选用代入法解答,比如由得,x= ,再代入,得2001- 2003y20022003( )+2002y=20042001- 2003y2002解答起来十分麻烦. 如果选用加减法,比如,2003- 2002,可以消去 x,得
3、20032003y-20022002y=20012003- 20042002形式也很复杂,不易求解. 注意到两个方程的系数正好对调这一特征,先将两方程相加,+,得4005x + 4005y = 4005化简,得 x+y=1 再将两方程相减, - ,得 -x + y = - 3即 x-y=3 由、组成方程组,得x + y =1 x - y =3 )解这个方程组得.x = 2y = -1)规律总结:整体思想在数学解题中的应用,不仅仅局限于上述的类型,还涉及到其他的各种题型,只有通过不断地挖掘、归纳、提炼,才能更好地把握整体思想的本质和规律,从而使问题迎刃而解。2、数形结合思想数和形是初中数学中被研
4、究得最多的对象,数形结合是一种极富数学特点的信息转换,它通过形理解数,利用形的直观加深对数量关系的理解;通过数理解形,利用数的抽象性加深对图形位置关系的理解,即图形位置问题的坐标化,数量关系图形化。例 2、 已知正比例函数 ykx的图象与反比例函数 5kyx( 为常数, 0k)的图象有一个交点的横坐标是 2求两个函数图象的交点坐标;若点 1()Axy, , 2()Bxy, 是反比例函数 5kyx图象上的两点,且 12x,试比较12y,的大小解题思路:(1)由由交点横坐标的含义可得方程组 消去字母 y,得 52k,25ky解得 k所以正比例函数的表达式为 yx,反比例函数的表达式为 4x要求两个
5、学优中考网 函数图象的交点坐标,只须在得出的函数解析式基础上画出图象(反比例函数 4yx的图象分别在第一、三象限内的双曲线,正比例函数 yx的图象是经过原点的一条直线)由题知交点的横坐标是 2 即可求出纵坐标也是 2 即为(2,2) ,由图象的关于原点成中心对称可得另一交点为 (), 所以两函数图象交点的坐标为(2,2) , (2), (2)利用上问中所画图形得反比例函数 4yx的图象的 y的值随 x值的增大而减小,所以当 120x时, 12y当 120时, 12当 120时,因为14y, 24x,所以 y规律总结:借助“形”的几何直观来阐明“数”之间的某种关系能使问题简单。这类问题常把函数、
6、方程、不等式联系起来.3、 化归思想所谓化归思想,就是指对于那些数学问题难以求解时,我们可以根据问题的性质、条件和关系,采取适当的方法把较困难的问题转化为较简单的或早已熟悉的问题来进行解答。例 3、如图,是一块在电脑屏幕上出现的矩形色块图,由 6 个颜色不同的正方形组成,设中间最小一个正方形边长为 1,则这个矩形色块图的面积为 .解题思路: 设次小正方形边长为 x,则其余正方形的边长依次为 1+x,2+x,3+x,根据题意得:(2+x+3+x) (3+x+x)-【(3+x) +(2+x) +(1+x) +2x 】=1,222解得 x=4.所以矩形色块图的面积为 1311=143.规律总结:如果
7、对待这个问题时只考虑几何的面积求法,很容易陷入分别求边长的死胡同,从而一筹莫展,这里采用代数考虑,将问题用一个方程表达出来,进而求出次小正方形的边长,进而求得解。这里又包含了整体思想、方程思想.4、 换元思想例 4 分解因式(x 2-3x+2)(x 2-3x-4)-72解题思路:注意题目的形式特征,把某一部分(比如 x2-3x+2)看作一个整体,运用整体换元,把原方程化为形如 x2+px+q 的二次三项式,进一步用十字相乘法,最后注意分解要彻底。设 x2-3x+2=t 则(x 2-3x+2)(x 2-3x-4)-72=t(t-6)-72=t -6t-722=(t+6) (t-12)= (x2-
8、3x+2+6)(x 2-3x+2-12)=(x 2-3x+8) (x 2-3x-10)=(x 2-3x+8) (x-5) (x+2).规律总结: 如果把(x 2-3x+2)与(x 2-3x-4)相乘,将得到一个四次多项式,这时再分解就困难了,注意题目的形式特征,运用整体换元。5、分类思想分类思想是根据所研究的对象相同点和不同点区分不同类型的数学思想方法.例 5. 仔细阅读下列材料,然后解答问题:某商场在促销期间规定:商场内所有商品按标价的 80出售,同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:消费金额 a(元)的范围40a250a70a90a获得的奖金额(元)30 60
9、 100 130根据上述促销方法,顾客在商场内购物可以获得双重优惠。例如,购买标价为 450 元的商品,则消费金额为 45080=360 元,获得的优惠额为 450(180)+30=120 元。设购买该商品得到的优惠率=购买商品获得的优惠额商品标价。(1)购买一件标价为 1000 元的商品,顾客得到的优惠率是多少?(2)对于标价在 500 元与 800 元之间(含 500 元和 800 元)的商品,顾客购买标价为多少元的商品,可以得到 的优惠率?31解题思路:这道题较新颖,既考查学生的阅读理解能力,又考查学生分类解题能力和学优中考网 运用新知能力。第(2)问中由于标价在 500 元800 元之
10、间,因此消费金额在 400 元640 元之间,第二次送奖券优惠情况不确定,有两种情况,所以应分类解答。解:(1)标价为 1000 元的商品的优惠率为: %301)8((2)设顾客购买标价为 x 元的商品,可以得到 的优惠率31 8x5 640.40分两种情况:当 时,有25x50x8.据题意得: 3160.解之并检验得: 。4但 25x0x=450 不合题意,应舍去。当 时,有806640x8.据题意得: 31x2.解之并检验得:x=750。符合题意。综合可知:x=750。答:顾客购买标价为 750 元的商品时,可以得到 的优惠率。31规律总结:由以上三例可以看出,当解某些题的时候,应注意分类
11、,分类讨论时要正确选择分类的标准,一是不能遗漏,二是不能重复。只有这样,才能比较严谨、规范地解决数学应用问题。三、综合训练一、选择题1. 若抛物线 y x26 x c 的顶点在 x 轴上,则 c 的值是( )A9 B3 C9 D02.如果已知一次函数 y kx b 的图象不经过第三象限,也不经过原点,那么 k、 b 的取值范围是( )A k0 且 b0 B k0 且 b0C k0 且 b0 D k0 且 b03 根据下表中的规律,从左到右的空格中应依次填写的数字是( )000 110 010 111 001 101A100,011 B011,100 C011,101 D101,1104.若 A
12、BC 的边长为 a, b, c,且满足 a2 b2 c2 ab bc ca,则 ABC 是( )A等边三角形 B等腰直角三角形C钝角三角形 D直角三角形5.关于 x 的二次方程 x2(2 m1) x m80 的两个实数根,一个根大于1,另一个根小于1,则 m 应满足( )A m1 B m2C m2 D m1二、填空题1. 要用总长 30m 的篱笆沿墙的一边围一长方形的鸡舍,除墙这一边外,其他三边(除门外)都用篱笆围成,要求长方形的长是宽的 2 倍,并要求留 2m 宽的门,这一鸡舍的长与宽分别为_、_2. 已知二次函数 y4 x22 mx m2与反比例函数 y 的图象在第二象限内的一个交点的横坐
13、标是2,则 m 的值是_3. 已知:, , , ,若 3283215442245符合前面式子的规律, 则 a + b = ab2104.如图, “回”字形的道路宽为 1 米,整个“回”字形的长为 8 米,宽为 7 米,一个人从入口点 A 沿着道路中央走到终点 B,他共走了 .学优中考网 8 米7 米 BA5.甲、乙两人分别从相距 30km 的 A、B 两地同时相向而行,经过 3h 后相距 3km,再经过2h,甲到 B 地所剩的路程是乙到 A 地所剩路程的 2 倍,甲、乙两人的速度分别为_、_.三、解答题1.甲、乙两班学生到集市上购买苹果,苹果的价格如下:购苹果数 不超过 30kg 30kg 以
14、上但不超过 50kg 50kg 以上每千克价格 3 元 2.5 元 2 元甲班分两次共购苹果 70kg(第二次多于第一次) ,共付 189 元,而乙班则一次购苹果70kg。(1)乙班比甲班少付多少元?(2)甲班两次分别购买苹果多少千克?2. 如图,矩形 ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和为86cm,一条对角线长是 13cm,那么矩形的面积是多少?3已知抛物线 y( m1) x22 mx m3 与 x 轴交于 A、 B 两点,当 m 取什么实数时,(1) A、 B 两点都在 y 轴的右侧;(2) A、 B 两点分别在 y 轴的左、右两侧,且线段 AO 的长度大于线
15、段 OB 的长度AB CDO4已知一次函数 y x6 和反比例函数 y ( k0) (1) k 满足什么条件时,这两个函数在同一坐标系 xOy 中的图象有两个公共点?(2)设(1)中的两个公共点分别为 A、 B, AOB 是锐角还是钝角?答 案一、选择题1.A 2.C 3.B 4.A 5.C二、填空题1. 16m 和 8m 或 12.8m 和 6.4m 2.-7 3.109 4.56 5. 甲的速度为 4Km/h,乙的速度为 5Km/h 或甲的速度为 16/3Km/h,乙的速度为 17/3Km/h。三、解答题1. 解:(1)乙班比甲班少付: (元) 。49270189(2)设甲班第一次购买苹果
16、 x 千克,则第二次购买苹果 千克。)x70(第二次多于第一次 x70 35故分三种情况:当 时,有 ,20x70x5据题意得: ,189)7(3x=49。但 不合题意,应舍去。2049当 时,有 ,3x50x740据题意得: ,189)(5.学优中考网 x=28,。42870x当 时,有3540x7据题意得: 189)0(但左边 不合题意,舍去;1897综合,只有符合题意。答:甲班第一次购买 28 千克苹果,第二次购买 42 千克。2. 解 根据题意,有AB+BC+CD+DA=86-2(AC+BD)=86-413=34.AB+BC=17.两边平方,得:AB +2ABBC+BC =289,22又 AB +BC =AC =169,两式相减,得 2ABBC=120,ABBC=60( ).23.(1) m3 或 1 m (2)0 m14 (1) k9 且 k0(2)当 0 k9 时, AOB 是锐角;当 k0 时, AOB 是钝角学优 中考,网