收藏 分享(赏)

《用加减消元法解二元一次方程组》同步练习1(北京课改七年级下).doc

上传人:weiwoduzun 文档编号:4433938 上传时间:2018-12-28 格式:DOC 页数:13 大小:144KB
下载 相关 举报
《用加减消元法解二元一次方程组》同步练习1(北京课改七年级下).doc_第1页
第1页 / 共13页
《用加减消元法解二元一次方程组》同步练习1(北京课改七年级下).doc_第2页
第2页 / 共13页
《用加减消元法解二元一次方程组》同步练习1(北京课改七年级下).doc_第3页
第3页 / 共13页
《用加减消元法解二元一次方程组》同步练习1(北京课改七年级下).doc_第4页
第4页 / 共13页
《用加减消元法解二元一次方程组》同步练习1(北京课改七年级下).doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、用加减消元法解二元一次方程组 同步练习【主干知识】认真预习教材,尝试完成下列各题:1方程组 23154mn中,n 的系数的特别是_,所以我们只要将两式_,就可以消去未知数,化成一个一元一次方程,达到消元的目的2方程组 3中,m 的系数的特别是_,所以我们只要将两式_,就可以消去未知数 m,化成一个一元一次方程,进而求得方程组的解3用加减法解二元一次方程组时,两个方程中同一个未知数的系数必须_或_,即它们的绝对值_当未知数的系数的符号相同时,用_;当未知数的系数的符号相反时,用_当方程组里两个方程的同一个未知数的系数成整数倍时,可以利用_性质,将方程经过简单变形,使这个未知数的系数的绝对值_,再

2、用加减法消元,进一步求得方程组的解4方程组 217xy里两个方程只要两边_,就可以消去未知数_5方程组 3的两个方程只要两边_,就可以消去未知数_6用加减法解二元一次方程组 21349xy时,你能让两个方程中 x 的系数相等吗?你的办法是_7用加减法解方程组 621xy时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是( )969896186412(1)()(3)()4464293xy xyxyA (1) (2) B (2) (3) C (3) (4) D (4) (1)8用加减法解二元一次方程组 1xy【点击思维】学优中考网 1用加减法解二元一次方程组的关键

3、是使方程组里两个方程中同一个未知数系数的绝对值_,然后把方程两边分别相_或_,实现化二元为_,从而解出它的解2自己总结出用加减法解二元一次方程组的一般步骤3判断正误:(1)已知方程组 2389xy则 x、y 的值都是负值 ( )(2)方程组7272838xyy与有相同的解 ( )(3)方程组 60603%1602xy与解相同 ( )4解下列方程组:(1) 5278xy ()34yzx【典例分析】例 1 用加减法解方程组 2931xy思路分析:用加减法解二元一次方程组时,必须使方程组中两方程所含同一个未知数的系数相同或互为相反数现在该方程组不具备这个条件,所以我们要想办法转化成这样的条件方法一:

4、观察 x 的系数:中 x 的系数是中的 3 倍,所以可得3,使 x 的系数相等,然后减去,可消去 x;方程二:观察 y 的系数:中 y的系数是中的 2 倍,所以可将2,便 y 的系数互为相反数,再与相加可消去 y,两种方法皆可达到消元的目的解:2,得 6x-2y=-2 +得,7x=7,x=1把 x=1 代入,得 1+2y=9,2y=8,y=4所以 14xy是原方程组的解方法点拨:用加减法解二元一次方程组时应当注意:当方程组比较复杂时,应先化简,如去分母、去括号、合并同类项等,将两方程化成 ax+by=c 的形式;当需将一未知数的系数扩大时,要根据等式的性质,一定要两边同乘以某一个倍数; 在求出

5、一未知数的值之后,可以将它代入化简后的方程组的任意一个方程中,求出第二个未知数的值;要想知道解是否正确,可将求得的解代入原方程组的两个方程加以检验例 2 选择适合的方法解下列方程组: ()4379:25(1)(2)(3)500xyxyxy思路分析:(1)方程组中,方程中含有(x+2y) ,因此,只需将方程x+2y=2整体代入即可化“二元”为“一元” (2)方程组里两个方程中未知数 y 的系数互为相反数,因此只要两方程相加即可化“二元”为“一元” (3)方程组中的第 1 个方程中两个未知数之间是比值关系,可化成 x= 5y,然后代入,用代入法求解;还可设x=2a,y=5a,将 x=2a,y=5a

6、 代入中,求得 a 的值,然后再分别代入 x=2a,y=5a 中,求得 x、y 的值,这样求解,可避免分数解:(1)把代入得 x+22=4,解之,得 x=0把 x=0 代入,得 2y=2,解之,得 y=1所以原方程组的解是 01xy(2)+,得 7x=14,解之,得 x=2把 x=2 代入得,8-7y=5,解之,得 y= 37学优中考网 所以原方程组的解是237xy(3)设 x=2a,y=5a,并把它们代入,得 5002a+2505a=22 500 000解之,得 a=10 000,把 a=10000 分别代入 x=2a,y=5a 中,得 x=20 000,y=50 000所以原方程组的解是

7、205xy方法点拨:代入法和加减法是解二元一次方程组的基本方法以后解这种类型的题时,如果没有提出具体要求,应根据方程组的特别,选择其中一种比较简单的方法选用解法时,一般是当其中某个未知数的系数为 1(更特别的,像 x=)时,选用代入法较为简便;当两个方程中某个未知数的系数的绝对值相等或成整数倍时,选用加减法比较简便;其他情况,自己灵活运用【基础能力训练】1对于方程组 2354xy而言,你能设法让两个方程中 x 的系数相等吗?你的方法是_;若让两个方程中 y 的系数互为相反数,你的方法是_2用加减消元法解方程组 8752x 将两个方程相加,得( )A3x=8 B7x=2 C10x=8 D10x=

8、103用加减消元法解方程组 314y,-得( )A2y=1 B5y=4 C7y=5 D-3y=-34用加减消元法解方程组 2537xy正确的方法是( )A+得 2x=5 B+得 3x=12C+得 3x+7=5 D先将变为 x-3y=7,再-得 x=-25已知方程组 112mxnxyy与,则 m=_,n=_6在方程组 3426中,若要消 x 项,则式乘以_得_;式可乘以_得_;然后再两式_即可7在 13xy中,得_;4 得_,这种变形主要是消_ 8用加减法解 0.7.3125xy时,将方程两边乘以_,再把得到的方程与相_,可以比较简便地消去未知数_9方程组 364xy,3-2 得( )A-3y=

9、2 B4y+1=0 Cy=0 D7y=-810已知 023,则 xy 的值是( )A2 B1 C-1 D211方程组 5yx的解是( )A 3333.2422xxDyyy12已知 41xy与都是方程 y=ax+b 的解,则 a 和 b 的值是( )A11.222253aaBCbbb13用加减法解下列方程组:(1) 387995()(3)2745410xymnxy学优中考网 152343(1)4()(4)5(6)31572xyxyxy14用合适的方法解下列方程组:(1) 402235651()(3)3413yxxyxy349323(4)4(5)1205 7xzxyy15如果二元一次方程组 153

10、24axbyxy与,则 a-b=_【综合创新训练】16在方程 y=kx+b 中,当 x=2 时,y=2;当 x=-4 时,y=-16,求当 x=1 时,y=_17已知 a、b 都是有理数,观察下表中的运算,在空格处填上数a、b 的运算 a+b a-b 1ab运算的结果 -49 -9718若方程组 431()xya的解与 x 与 y 相等,则 a 的值等于( )A4 B10 C11 D1219已知方程组 231kxy的解 x 和 y 的和等于 6,k=_学优中考网 20甲、乙两位同学一起解方程组 2,3axbyc,甲正确地解得 1xy,乙仅因抄错了题中的 c,解得 26xy,求原方程组中 a、b

11、、c 的值21已知 23xya,求 xy的值【探究学习】皇帝巧算牛马价有一年,康熙皇帝微服南巡,在扬州城一个集市上看见两个公差正和几个卖牛马的伙计争执,只听伙计苦苦央求两公差:“这位大爷,按我们讲好的价钱,您买 4匹马,6 头牛,共 48 两银子;这位大爷,您买 3 匹、5 头牛,共 38 两银子,加起来,一共是86 两银子,可是你们只给了 80 两,还少 6 两,我们可亏不起这么多呀!”而两位公差不仅不补给银子,反而瞪眼呵斥,强赶牛、马要走正在这时,身着便服的康熙,走到公差面前说:“买卖公平,这是天经地义的事,一匹马,一头牛都有个价,要想买牛马,该付多少银子,就付多少银子,怎么能仗势欺人!”

12、甲公差见此人竟敢当众管教他们,大怒:“你找死呀!你知道一匹马、一头牛是什么价?”康熙微微一笑,略略思索了一会儿,便说:“我事先不知道,但可以算出来,马每匹 6 两,牛每头 4 两!”伙计们和围观的人一听无不惊奇,而公差去恼羞成怒,上前就要抓康熙,此时,康熙从口袋里掏出玉玺,公差一看,方知皇帝驾到,吓得魂飞魄散,连忙跪下求饶原来,康熙是一位精通数学的皇帝,他当时是用算术的方法求出马和牛的价格的同学们,你不妨用二元一次方程算一算,看与康熙皇帝求得的结果一样吗?学优中考网 答案:【主干知识】1相等 相减 2互为相反数 相加3相等 互为相反数 相等 减法 加法 等式的 相等4两边分别相加 5相减 x

13、6让两边同乘以 37C 8 14y【点击思维】1相等 加 减 一2方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,就用适当的整数乘方程两边,使一个未知数的系数互为相反数或相等;把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;解这个一元一次方程;将求出的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,从而得到方程组的解3 (1) x 若 x、y 均是负值,那么右边也应是负的,故不对(2) 将 y=372变形可得 3x-2y=7,再将 y= 283x变形,得 2x-3y=-8 与右边方程组中的第个方程不一致,所以不对(3) 将 30%x+6

14、0%y=10%60 化简,得 x+2y=204把式两边乘 2,得 6x-10y=26 把式两边乘 3,得 6x+21y=243 -得 31y=217,y=7把 y=7 代入得 3x-35=13解得 x=16所以原方程组的解是 167xy(2)该题可有个简单方法:用+得 2x+2y+2z=9 即 x+y+z=4.5 -得 z=2.5-得 x=1.5-得 y=0.5所以原方程组的解是1.502.xyz【基础能力训练】13,2 4,32D 3C 4D 52 362 6x+8y=2 3 6x-9y=18 相减79x+12y=3 8x-12y=24 y 810 加 x9C 10B 11A 12B13 (

15、1)41423 33()()()3072mxxxynyy (5) (6)75xy 14 (1)代入法 8(2)加减法13698xy(3)代入法或加减法 03x(4)可化成方程组 21y代入法或加减法皆可 128xy(5)代入法及加减法都用 3xz150【综合创新训练】16-1 解析:把 x=2,y=2 及 x=-4,y=-16 分别代入到 y=kx+b 中,组成一个二元一次方程组 234164kbkb与 ,所以 y=kx+b 此时就化为 y=3x-4,当 x=1 时,y=31-4=-117-3 解析:组成一个方程组 9772aa与把它们代入到 1ab 中得1ab= 7324=-318C 解析:

16、由 x 与 y 相等,先求得 x 与 y 的值为 17,代入到 ax+(a-1)y=3 中求得a=1119 72 解析:由 x+y=6 代入到方程组中,可化为 662313kyk与学优中考网 解得 k= 7220把 1xy代入到原方程组中,得 23abc 可求得 c=-5,乙仅因抄错了 c 而求得 6,但它仍是方程 ax+by=2 的解,所以把 6xy代入到 ax+by=2 中得 2a-6b=2 即 a-3b=1把 a-3b=1 与 a-b=2 组成一个二元一次方程组5231aab与故 a= 2,b= 1,c=-521把代入得 2x+y=3(x-2y) ,化简得 7y=x 即 xy=7【探究学习】设马每匹 x 两,牛每头 y 两,根据题意,得4686354yx,与,与康熙皇帝用算术方法求得的结果是一致的学。优?中考%,网

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报