收藏 分享(赏)

《名校课堂》2016年秋人教版数学九年级上册习题 小专题(十) 证明切线的两种常用方法.doc

上传人:weiwoduzun 文档编号:4423017 上传时间:2018-12-28 格式:DOC 页数:4 大小:76.50KB
下载 相关 举报
《名校课堂》2016年秋人教版数学九年级上册习题 小专题(十) 证明切线的两种常用方法.doc_第1页
第1页 / 共4页
《名校课堂》2016年秋人教版数学九年级上册习题 小专题(十) 证明切线的两种常用方法.doc_第2页
第2页 / 共4页
《名校课堂》2016年秋人教版数学九年级上册习题 小专题(十) 证明切线的两种常用方法.doc_第3页
第3页 / 共4页
《名校课堂》2016年秋人教版数学九年级上册习题 小专题(十) 证明切线的两种常用方法.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、小专题( 十) 证明切线的两种常用方法类型 1 直线与圆有交点方法归纳:直线过圆上某一点,证明直线是圆的切线时,只需“连半径,证垂直,得切线” “证垂直”时通常利用圆中的关系得到 90的角,如直径所对的圆周角等于 90等【例 1】 如图,ABAC,AB 是O 的直径,O 交 BC 于 D,DMAC 于 M.求证:DM 与O 相切1(朝阳中考)如图,AB 是O 的弦,OAOD,AB,OD 交于点 C,且 CDBD.(1)判断 BD 与 O 的位置关系,并证明你的结论;(2)当 OA3,OC 1 时,求线段 BD 的长2(德州中考)如图,已知O 的半径为 1,DE 是O 的直径,过 D 作O 的切

2、线,C 是 AD 的中点,AE 交O于 B 点,四边形 BCOE 是平行四边形(1)求 AD 的长;来源:gkstk.Com(2)BC 是O 的切线吗?若是,给出证明,若不是,说明理由来源:学优高考网3(毕节中考)如图,以ABC 的 BC 边上一点 O 为圆心的圆,经过 A,B 两点,且与 BC 边交于点 E,D 为 BE的下半圆弧的中点,连接 AD 交 BC 于 F,ACFC.(1)求证:AC 是 O 的切线;(2)已知圆的半径 R5,EF3,求 DF 的长类型 2 不确定直线与圆是否有公共点方法归纳:直线与圆没有已知的公共点时,通常“作垂直,证半径,得切线” 证明垂线段的长等于半径常用的方

3、法是利用三角形全等或者利用角平分线上的点到角的两边的距离相等【例 2】 如图,ABAC,D 为 BC 中点,D 与 AB 切于 E 点求证:AC 与D 相切4如图,O 为正方形 ABCD 对角线 AC 上一点,以 O 为圆心,OA 长为半径的O 与 BC 相切于点 M,与AB,AD 分别相交于点 E,F.求证:CD 与O 相切5如图,在 RtABC 中,B90,BAC 的平分线交 BC 于点 D,E 为 AB 上的一点,DEDC,以 D 为圆心,DB 长为半径作D,AB5,EB3.来源:学优高考网 gkstk(1)求证:AC 是 D 的切线;(2)求线段 AC 的长参考答案来源:学优高考网 g

4、kstk【例 1】 证明:法一:连接 OD.ABAC ,BC.OBOD,BDOB.BDOC.ODAC.DMAC ,DMOD.DM 与O 相切法二:连接 OD,AD.AB 是O 的直径,ADBC.ABAC ,BADCAD.DMAC ,CADADM90.OAOD,BADODA.ODAADM90.即 ODDM,DM 是O 的切线1.(1)连接 OB,OAOB,OACOBC.OAOD,AOC90.OACOCA90.DCDB ,DCBDBC.DCBACO,ACODBC.DBCOBC90.OBD90.点 B 是半径 OB 的外端,BD 与O 相切(2)设 BDx,则 CDx,ODx1,OB OA 3,由勾

5、股定理得:3 2x 2(x 1) 2.解得 x4.BD4. 来源:gkstk.Com2.(1)连接 BD,则 DBE90 .四边形 BCOE 是平行四边形,BCOE ,BCOE1.在 RtABD 中,C 为 AD 的中点,BC AD 1.12AD2.(2)BC 是O 的切线,理由如下:连接 OB,由(1)得 BCOD ,且 BCOD.四边形 BCDO 是平行四边形又AD 是O 的切线,ODAD.四边形 BCDO 是矩形OBBC,BC 是O 的切线 3.(1)连接 OA,OD,D 为 BE 的下半圆弧的中点,FOD 90 .ACFC,CAF AFC.AFC OFD,CAF OFD.OAOD,OD

6、F OAF.FOD 90 .OFD ODF90.OAF CAF90,即OAC90.AC 与O 相切(2)半径 R5,EF3,OFOEEF532.在 RtODF 中,DF . 52 22 29【例 2】 法一:连接 DE,作 DFAC,垂足为 F.AB 是D 的切线,DEAB.DFAC ,DEBDFC90.ABAC ,BC.BDCD ,BDECDF.DFDE.F 在D 上AC 是D 的切线法二:连接 DE,AD,作 DFAC,F 是垂足AB 与D 相切,DEAB.ABAC ,BDCD,DABDAC.DEAB,DFAC ,DEDF.F 在D 上,AC 与D 相切 4.证明:连接 OM,过点 O 作 ONCD,垂足为 N,O 与 BC 相切于 M,OMBC.正方形 ABCD 中,AC 平分BCD ,又ONCD,OMBC ,OMON.N 在O 上CD 与O 相切 5.(1)证明:过点 D 作 DFAC 于 F.ABC90,ABBC.AD 平分BAC,DF AC,BDDF.点 F 在D 上AC 是D 的切线(2)在 RtBDE 和 RtFDC 中,BDDF,DEDC ,RtBDE RtFDC(HL),EBFC.ABAF,ABEBAF FC ,即 ABEBAC,AC538.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报