1、电路板级的电磁兼容设计,计算机应用系统设计,本章目的,从元件选择、电路设计和印制电路板的布线等几个方面讨论电路板级的电磁兼容性(EMC)设计。第一部分:电磁兼容性的概述第二部分:元件选择和电路设计技术第三部分:印制电路板的布线技术,第一部分 电磁干扰和兼容性的概述,1电磁环境的组成2 电磁兼容性的费用,1电磁环境的组成 一个简单的电磁干扰模型由三个部分组成:电磁干扰源耦合路径接收器电磁干扰模型的组成如图一所示。,电磁干扰源,电磁干扰源包括微处理器、微控制器、静电放电、传送器、瞬时功率执行元件在一个微控制器系统里,时钟电路通常是最大的宽带噪声发生器,而这个噪声被分散到了整个频谱。随着大量的高速半
2、导体器件的应用,其边沿跳变速率非常快,这种电路可以产生高达300MHZ的谐波干扰。,耦合路径,噪声被耦合到电路中最简单的方式是通过导体的传递 耦合也能发生在有共享负载(阻抗)的电路中例如,两个电路共享一条提供电源电压导线,并且共享一条接地的导线。,接收器(受体),所有的电子电路都可以接受传送的电磁干扰。虽然一部分电磁干扰可通过射频被直接接受,但大多数是通过瞬时传导被接受的。,2 电磁兼容性的费用,最经济有效的电磁兼容性设计方法,是在设计的早期阶段充分考虑评估电磁兼容性的技术要求(见图2)。,第二部分 元件的选择和电路设计技术,元件的选择和电路设计是影响板级电磁兼容性性能的主要因素。 元件组 集
3、成电路 微控制器电路,元件组:与有引脚的元件相比,无引脚且表面贴装的元件的寄生效果要小一些 1电阻由于表面贴装元件具有低寄生参数的特点,因此,表面贴装电阻总是优于有引脚电阻。对于有引脚的电阻,应首选碳膜电阻,其次是金属膜电阻,最后是线绕电阻。,2电容,铝质电解电容通常是在绝缘薄层之间以螺旋状缠绕金属箔而制成,这样可在单位体积内得到较大的电容值,但也使得该部分的内部感抗增加。钽电容由一块带直板和引脚连接点的绝缘体制成,其内部感抗低于铝电解电容。陶质电容的结构是在陶瓷绝缘体中包含多个平行的金属片。其主要寄生为片结构的感抗,并且通常这将在低于MHz的区域造成阻抗。绝缘材料的不同频响特性意味着一种类型
4、的电容会比另一种更适合于某种应用场合。,铝电解电容和钽电解电容适用于低频终端,主要是存储器和低频滤波器领域。在中频范围内(从KHz到MHz),陶质电容比较适合,常用于去耦电路和高频滤波。特殊的低损耗(通常价格比较昂贵)陶质电容和云母电容适合于甚高频应用和微波电路。为得到最好的EMC特性,电容具有低的ESR(Equivalent Series Resistance,等效串联电阻)值是很重要的,因为它会对信号造成大的衰减,特别是在应用频率接近电容谐振频率的场合。,a)旁路电容 旁路电容的主要功能是产生一个交流分路,从而消去进入易感区的那些不需要的能量。 b)去耦电容 有源器件在开关时产生的高频开关
5、噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。陶瓷电容常被用来去耦,其值决定于最快信号的上升时间和下降时间,c)电容谐振,根据谐振频率选择旁路电容和去耦电容的值,3电感,电感是一种可以将磁场和电场联系起来的元件,其固有的、可以与磁场互相作用的能力使其潜在地比其他元件更为敏感。 两种基本类型的电感:开环和闭环。 开环电感的磁场穿过空气,这将引起辐射并带来电磁干扰(EMI)问题。在选择开环电感时,绕轴式比棒式或螺线管式更好,因为这样磁场将被控制在磁芯(即磁体内的局部磁场)。,对闭环电感来说,磁场被完全控制在磁心,因此在电路
6、设计中这种类型的电感更理想,当然它们也比较昂贵。电感比起电容和电阻而言的一个优点是它没有寄生感抗,因此其表面贴装类型和引线类型没有什么差别。电感的磁芯材料主要有两种类型:铁和铁氧体。铁磁芯电感用于低频场合(几十KHz),而铁氧体磁芯电感用于高频场合(到MHz)。因此铁氧体磁芯电感更适合于EMC应用。,4二极管,二极管是最简单的半导体器件。由于其独特的特性,某些二极管有助于解决并防止与EMC相关的一些问题。表2列出了典型的二极管。,二极管的应用,许多电路为感性负载,在高速开关电流的作用下,系统中产生瞬态尖峰电流。二极管是抑制尖峰电压噪声源的最有效的器件之一。,在汽车控制应用中,无论有刷还是无刷电
7、机,当电机运行时,都将产生电刷噪声或换向噪声。因此需要噪声抑制二极管,为了改进噪声抑制效果,二极管应尽量靠近电机接点。, 集成电路,现代数字集成电路(IC)主要使用CMOS工艺制造。CMOS器件的静态功耗很低,但是在高速开关的情况下,CMOS器件需要电源提供瞬时功率,高速CMOS器件的动态功率要求超过同类双极性器件。因此必须对这些器件加去耦电容以满足瞬时功率要求。,1集成电路封装,对于分离元件,引脚越短,EMI问题越小。 IC的引脚排列也会影响EMC性能。电源线从模块中心连到I.C.引脚越短,它的等效电感越少。因此VCC与GND之间的去耦电容越近越有效。 时钟电路是影响EMC性能的主要因素,合
8、理的地线、适当的去耦电容和旁路电容能减小辐射。 未使用的CMOS引脚应该接地线或电源。在MCU电路中,噪声来自没连线/终端的输入,以至MCU执行错误的代码。,2电压校准,对于典型的校准电路,适当的去耦电容应该尽可能近地放置在校准电路的输出位置,因为在跟踪过程中,距离在校准的输出和负荷之间将会产生电感影响,并引起校准电路的内部振动。一个典型例子,在校准电路的输入和输出中,加上0.1uF的去耦电容可以避免可能的内在振动和过滤高频噪声。为了减少输出脉动,要加上一个相对大的旁路电容(10uF/A)。图11演示了校准电路的旁路和去耦电容。电容要放到离校准装置尽可近的地方。,3线路终端,当电路在高速运行时
9、,在源和目的间的阻抗匹配非常重要,因为错误的匹配将会引起信号反馈和阻尼振荡。过量的射频能量将会辐射或影响到电路的其他部份,引起EMI(电磁兼容性)问题。信号的端接有助于减少这些非预计的结果,a) 串联/源端接 (Series/Source Termination),图12演示了串联/源端接方法。在源Zs和分布式的线迹Zo之间,加上了源端接电阻Rs,用来完成阻抗匹配。Rs还能吸收负载的反馈。Rs必须离源驱动电路尽可能的近。Rs的值在等式Rs=(Z0-Zs)中是实数值。 一般Rs大约取1575欧的一个值。 一般在MCU的总线上会采用这种方法。,b)并联端接,图13 演示了并联端接方法。附加一个并联
10、端接电阻Rp,这样 Rp/ ZL就和Zo相匹配了。但是这个方法对手持式产品不适用的,因为Rp的值太小了(一般为50欧),而且这个方法很耗能量,再者这个方法还需要源驱动电路来驱动一个较高的电流(100mA5V,50欧)。由于ZoLCd的值还使这个方法增加了一个小的延时,这里Z0L = Rp/ZL和Cd是负载的输入分流电容。,c)RC端接,图14演示了RC端接方法。这个方法类似于并联端接,但是增加了一个C1。和在并联端接方法中一样,R用于提供匹配Z0的阻抗。C1为R提供驱动电流并过滤掉从线迹到地的射频能量。因此,相比并联端接方法,RC端接方法需要的源驱动电流更少。R和C1的值由Z0,Tpd(环路传
11、输延迟)和Cd确定。 时间常数,RC = 3 x Tpd,这里R / ZL = Z0, C = C1 / Cd。,d)Thevenin端接,图15演示了Thevenin端接方法。此电路由上拉电阻R1和下拉电阻R2组成,这样就使逻辑高和逻辑低与目标负载相符。 R1和R2的值由R1 / R2 = Z0决定。 R1 + R2 + ZL的值要保证最大电流不能超过源驱动电路容量。举例来说, R1=220 欧,R2=330 欧这里VCC是驱动电压。,e)二极管端接 (Diode termination),图16演示了二极管端接方法。除了电阻被二极管替换以降低损耗之外,它与Thevenin端接方法类似。D1
12、和D2用来限制来自负载的过多信号反射量。与Thevenin端接方法不一样,二极管不会影响线性阻抗。对这种端接方法而言,选择Schottky和快速开关二极管是比较好的。 这种端接方法的优点在于不用已知Z0的值,而且还可以和其他类型的端接方法结合使用。通常在MCU的内部应用这种端接方法来保护I/O端口。, 微控制器电路,时钟靠近MCU就能保证对时钟频率仅有最小的驱动需求。,让供给电路(比如校准电路)靠近微控制器是不难办到的,再用一个独立的电容就可以减少直流电源对其它电路的影响。,时下,许多IC制造业者不断地减小微控制器的尺寸以达到在单位硅片上增加更多部件的目的。通常减小尺寸会使晶体管更快。这样一来
13、,虽然MCU时钟速率无法增加,但是上升和下降速度会增加,从而谐波分量使得频率值上升。许多情况下,减小微控制器尺寸无法通知给用户,这样最初时电路中的MCU是正常的,但以后在产品生命周期中的某个时间就可能出现EMC问题。对此最好的解决方法就是在开始设计电路时就设计一个较稳健的电路。,1I/O口引脚 一个非内部终端的输入引脚需要有高阻抗(例如4.7K或10K)连接每个引脚到地或者到供电电平,以便确保一个可知的逻辑状态2IRQ口引脚由于中断对MCU操作有影响,因此它是元件中最敏感的引脚之一。对于静电释放来说,在IRQ连线上有双向二极管、transorbs或金属氧化变阻器终端通常就足够了,而且他们还能在
14、不产生大的线路负荷的情况下帮助减少过冲和阻尼震荡。即便是对价格很敏感的应用,IRQ线上的电阻终端也同样不可缺少。,3复位引脚 上电时,电源上升到MCU的工作电压,在晶振稳定之前需要等一段时间。因此在复位引脚上要有时间延时。最简单的延时就是电阻-电容(RC)网络,在电流经过电阻时电容开始充电,一直到电平达到了能被MCU在逻辑1状态时的复位电路检测到的值为止。 用二极管来钳住复位引脚的电压也是一种推荐做法,能防止供电电压过度,并且能够在断电时令电容迅速放电。,4.振荡器 许多MCU合成了倒相放大器,用来与外部晶体或陶瓷共振器一起构成皮尔斯振荡器结构。,对于振荡电路来说,必须有正反馈,且闭环增益必须
15、比1大。上图中电阻R0导致了负反馈,增大了放大器的开环增益需求。R0通常尽量的大,以将反馈减到最小,同时克服上电时的电流泄漏。当使用1MHz和20MHz的晶体时,R0应该在1M至10M的范围里。对于陶瓷共振器,R0一般用1M。,第三部分:印制电路板的布线技术,一个拙劣的PCB布线能导致更多的电磁兼容问题,而不是消除这些问题,在很多例子中,就算加上滤波器和元器件也不能解决这些问题。到最后,不得不对整个板子重新布线。因此,在开始时养成良好的PCB布线习惯是最省钱的办法。,1.PCB基本特性,PCB上的布线是有阻抗、电容和电感特性的。 阻抗:布线的阻抗是由铜和横切面面积的重量决定的。例如,1盎司铜则
16、有0.49m单位面积的阻抗。 电容:布线的电容是由绝缘体(EoEr)、电流到达的范围(A)以及走线间距(h)决定的。 用等式表达为C=EoErA/h,Eo是自由空间的介电常数(8.854pF/m),Er是PCB基体的相关介电常数(在FR4 碾压中为4.7) 电感:布线的电感平均分布在布线中,大约为1nH/m。 对于1 盎司铜线来说,在0.25mm (10mil)厚的FR4碾压情况下,位于地线层上方的0.5mm (20mil)宽,20mm (800mil)长的线能产生9.8m的阻抗,20nH的电感以及与地之间1.66pF的耦合电容。将上述值与元器件的寄生效应相比,这些都是可以忽略不计的,但所有布
17、线的总和可能会超出寄生效应。因此,设计者必须将这一点考虑进去。,PCB布线的普遍方针: 增大走线的间距以减少电容耦合的串扰; 平行的布电源线和地线以使PCB电容达到最 佳; 将敏感的高频线布在远离高噪声电源线的地 方; 加宽电源线和地线以减少电源线和地线的阻 抗。,2.分割,分割是指用物理上的分割来减少不同类型线之间的耦合,尤其是通过电源线和地线。,3.局部电源和IC间的去耦,局部去耦能够减少沿着电源干线的噪声传播。连接着电源输入口与PCB之间的大容量旁路电容起着一个低频脉动滤波器的作用,同时作为一个电势贮存器以满足突发的功率需求。此外,在每个IC的电源和地之间都应当有去耦电容,这些去耦电容应
18、该尽可能的接近引脚。这将有助于滤除IC的开关噪声。,4.基准面的射频电流,不管是对多层PCB的基准接地层还是单层PCB的地线,电流的路径总是从负载回到电源。返回通路的阻抗越低,PCB的电磁兼容性能越好。由于流动在负载和电源之间的射频电流的影响,长的返回通路将在彼此之间产生互耦。因此返回通路应当尽可能的短,环路区域应当尽可能的小。,5.布线分离,布线分离的作用是将PCB同一层内相邻线路之间的串扰和噪声耦合最小化。3W规范表明所有的信号(时钟,视频,音频,复位等等)都必须象图20所示那样,在线与线,边沿到边沿间予以隔离。为了进一步的减小磁耦合,将基准地布放在关键信号附近以隔离其他信号线上产生的耦合
19、噪声。,6.保护与分流线路,在时钟电路中,局部去耦电容对于减少沿着电源干线的噪声传播有着非常重要的作用。但是时钟线同样需要保护以免受其他电磁干扰源的干扰,否则,受扰时钟信号将在电路的其他地方引起问题。 7.接地技术 接地技术既应用于多层PCB,也应用于单层PCB。接地技术的目标是最小化接地阻抗,以此减少从电路返回到电源之间的接地回路的电势,(1)单层PCB的接地线 在单层(单面)PCB中,接地线的宽度应尽可能的宽,且至少应为1.5mm(60mil)。由于在单层PCB上无法实现星形布线,因此跳线和地线宽度的改变应当保持为最低的,否则将引起线路阻抗与电感的变化。 (2)双层PCB的接地线 在双层(
20、双面)PCB中,对于数字电路优先使用地格栅/点阵布线,这种布线方式可以减少接地阻抗,接地回路和信号环路。像在单层PCB中,地线和电源线的宽度最少应为1.5mm。 另外的一种布局是将接地层放在一边,信号和电源线放于另一边。在这种布置方式中将进一步减少接地回路和阻抗,去耦电容可以放置在距离IC供电线和接地层之间尽可能近的地方。,(3)保护环 保护环是一种可以将充满噪声的环境(比如射频电流)隔离在环外的接地技术,这是因为在通常的操作中没有电流流过保护环 (4)电容 在多层板上,由分离电源面和地面的绝缘薄层产生了PCB电容。在单层板上,电源线和地线的平行布放也将导致这种电容效应。PCB电容的一个优点是
21、它具有非常高的频率响应和均匀的分布在整个面或整条线上的低串连电感。它等效于一个均匀分布在整个板上的去耦电容。没有任何一个单独的分立元件具有这个特性。 (5)高速电路与低速电路 布放高速电路时应使其更接近接地面,而低速电路应使其接近电源面。 (6)地的铜填充 在某些模拟电路中,没有用到的电路板区域是由一个大的接地面来覆盖,以此提供屏蔽和增加去耦能力。但是假如这片铜区是悬空的(比如它没有和地连接),那么它可能表现为一个天线,并将导致电磁兼容问题。,(7)多层PCB中的接地面和电源面 在多层PCB中,推荐把电源面和接地面尽可能近的放置在相邻的层中,以便在整个板上产生一个大的PCB电容。速度最快的关键
22、信号应当临近接地面的一边,非关键信号则布放为靠近电源面。图23给出了一个典型的多层板的布线。 (8)电源要求 当电路需要不止一个电源供给时,采用接地将每个电源分离开。但是在单层PCB中多点接地是不可能的。一种解决方法是把从一个电源中引出的电源线和地线同其他的电源线和地线分隔开(如图24)。这同样有助于避免电源之间的噪声耦合。,8.布局布线技术,(1)过孔 过孔一般被使用在多层印制电路版中。当是高速信号时,过孔产生1到4nH的电感和0.3到0.8pF的电容到路径。因此,当铺设高速信号通道时,过孔应该被保持到绝对的最小。对于高速的并行线(例如地址和数据线),如果层的改变是不可避免,应该确保每根信号
23、线的过孔数一样。 (2) 45度角的路径 与过孔相似,直角的路径转动应该被避免,因为它在内部的边缘能产生集中的电场。该场能产生耦合到相邻路径的躁声,因此,当转动路径时全部的直角路径应该采用45度的。图25是45度路径的一般规则。,(3)短截线 短截线产生反射,同时也潜在增加波长可分的天线到电路的可能。虽然短截线长度可能不是任何在系统的已知信号的波长的四分之一整数,但是附带的辐射可能在短截线上产生共鸣。因此,避免在传送高频率和敏感的信号路径上使用短截线。,(4)星型的信号排列 虽然星型排列适用于来自多个PCB印制电路版的地线连接,但它带有能产生多个短截线的信号路径。因此,应该被避免用星型排列于高
24、速和敏感的信号上。 (5)辐射型信号排列 辐射型信号排列通常有最短的路径,以及产生从源点到接收器的最小延迟, 但是这也能产生多个反射和辐射干扰,所以应该被避免用辐射型排列于高迅和敏感的信号上。 (6)不变的路径宽度 信号路径的宽度从驱动到负载应该是常数。改变路径宽度对路径阻抗(电阻,电感,和电容)产生改变,从而,能产生反射和造成线路阻抗不平衡。所以最好保持路径的宽度不变。,(7)洞和过孔密集 经过电源和地面位面的过孔的密集会在接近过孔的地方产生局部化的阻抗差异。这个区域不仅成为信号活动的“热点”,而且供电面在这点是高阻,象射频电流一样低效。 (8)切分孔隙 与洞和过孔密集相同,切分孔隙(即长洞或宽通道)在电源位面和地位面范围内产生不一致的区域,并且就象防护物一样减少他们的效力,也局部性地递增电源位面和地位面的阻抗。 (9)接地金属化的模具 所有的金属化的模具应该被连接到地,否则,这些大的金属区域能充当辐射天线。,(10)最小化环面积 保持信号路径和它的地返回线紧靠在一起将有助于最小化地环,因而,避免潜在的天线环。对于高速单端信号,有时如果信号路径没有沿着低阻的地位面走,地线回路可能也必须沿着信号路径,洗衣机的典型印制板电路的一些改进措施,空气调节器的典型印制电路板电路的一些改进措施,