收藏 分享(赏)

PCB叠层结构知识 多层板设计技巧.doc

上传人:gnk289057 文档编号:4382879 上传时间:2018-12-26 格式:DOC 页数:5 大小:38.50KB
下载 相关 举报
PCB叠层结构知识 多层板设计技巧.doc_第1页
第1页 / 共5页
PCB叠层结构知识 多层板设计技巧.doc_第2页
第2页 / 共5页
PCB叠层结构知识 多层板设计技巧.doc_第3页
第3页 / 共5页
PCB叠层结构知识 多层板设计技巧.doc_第4页
第4页 / 共5页
PCB叠层结构知识 多层板设计技巧.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、PCB 叠层结构知识 多层板设计技巧较多的 PCB 工程师,他们经常画电脑主板,对 Allegro 等优秀的工具非常的熟练,但是,非常可惜的是,他们居然很少知道如何进行阻抗控制,如何使用工具进行信号完整性分析.如何使用 IBIS 模型。我觉得真正的 PCB 高手应该还是信号完整性专家,而不仅仅停留在连连线,过过孔的基础上。对布通一块板子容易,布好一块好难。小资料 对于电源、地的层数以及信号层数确定后,它们之间的相对排布位置是每一个 PCB 工程师都不能回避的话题;层的排布一般原则:元件面下面(第二层)为地平面,提供器件屏蔽层以及为顶层布线提供参考平面; 所有信号层尽可能与地平面相邻;尽量避免两

2、信号层直接相邻;主电源尽可能与其对应地相邻;兼顾层压结构对称。对于母板的层排布,现有母板很难控制平行长距离布线,对于板级工作频率在 50MHZ以上的( 50MHZ 以下的情况可参照,适当放宽),建议排布原则:元件面、焊接面为完整的地平面(屏蔽);无相邻平行布线层;所有信号层尽可能与地平面相邻;关键信号与地层相邻,不跨分割区。注:具体 PCB 的层的设置时,要对以上原则进行灵活掌握,在领会以上原则的基础上,根据实际单板的需求,如:是否需要一关键布线层、电源、地平面的分割情况等,确定层的排布,切忌生搬硬套,或抠住一点不放。 以下为单板层的排布的具体探讨:*四层板,优选方案 1,可用方案 3方案 电

3、源层数 地层数 信号层数 1 2 3 41 1 1 2 S G P S2 1 2 2 G S S P3 1 1 2 S P G S方案 1 此方案四层 PCB 的主选层设置方案,在元件面下有一地平面,关键信号优选布TOP 层;至于层厚设置,有以下建议:满足阻抗控制芯板(GND 到 POWER)不宜过厚,以降低电源、地平面的分布阻抗;保证电源平面的去藕效果;为了达到一定的屏蔽效果,有人试图把电源、地平面放在TOP、BOTTOM 层,即采用方案 2:此方案为了达到想要的屏蔽效果,至少存在以下缺陷:电源、地相距过远,电源平面阻抗较大电源、地平面由于元件焊盘等影响,极不完整由于参考面不完整,信号阻抗不

4、连续实际上,由于大量采用表贴器件,对于器件越来越密的情况下,本方案的电源、地几乎无法作为完整的参考平面,预期的屏蔽效果很难实现;方案 2 使用范围有限。但在个别单板中,方案 2 不失为最佳层设置方案。以下为方案 2 使用案例;案例(特例):设计过程中,出现了以下情况:A、整板无电源平面,只有 GND、PGND 各占一个平面;B、整板走线简单,但作为接口滤波板,布线的辐射必须关注;C、该板贴片元件较少,多数为插件。分析: 、由于该板无电源平面,电源平面阻抗问题也就不存在了;、由于贴片元件少(单面布局),若表层做平面层,内层走线,参考平面的完整性基本得到保证,而且第二层可铺铜保证少量顶层走线的参考

5、平面;、作为接口滤波板,PCB 布线的辐射必须关注,若内层走线,表层为GND、PGND,走线得到很好的屏蔽,传输线的辐射得到控制;鉴于以上原因,在本板的层的排布时,决定采用方案 2,即:GND、S1、S2、PGND,由于表层仍有少量短走线,而底层则为完整的地平面,我们在 S1 布线层铺铜,保证了表层走线的参考平面;五块接口滤波板中,出于以上同样的分析,设计人员决定采用方案 2,同样不失为层的设置经典。列举以上特例,就是要告诉大家,要领会层的排布原则,而非机械照搬。方案 3:此方案同方案 1 类似,适用于主要器件在 BOTTOM 布局或关键信号底层布线的情况;一般情况下,限制使用此方案;*六层板

6、,优选方案 3,可用方案 1,备用方案 2、4方案 电源 地 信号 1 2 3 4 5 6#1 1 1 4 S1 G S2 S3 P S4#2 1 1 4 S1 S2 G P S3 S4#3 1 2 3 S1 G1 S2 G2 P S3#4 1 2 3 S1 G1 S2 G2 P S3对于六层板,优先考虑方案 3,优选布线层 S2(stripline),其次 S3、S1。主电源及其对应的地布在 4、5 层,层厚设置时,增大 S2-P 之间的间距,缩小 P-G2 之间的间距(相应缩小 G1-S2 层之间的间距),以减小电源平面的阻抗,减少电源对 S2 的影响;在成本要求较高的时候,可采用方案 1

7、,优选布线层 S1、S2,其次 S3、S4,与方案 1 相比,方案 2 保证了电源、地平面相邻,减少电源阻抗,但 S1、S2、S3、S4 全部裸露在外,只有 S2 才有较好的参考平面;对于局部少量信号要求较高的场合,方案 4 比方案 3 更适合,它能提供极佳的布线层 S2。*八层板:优选方案 2、3、可用方案 1方案 电源 地 信号 1 2 3 4 5 6 7 8#1 1 2 5 S1 G1 S2 S3 P S4 G2 S5#2 1 3 4 S1 G1 S2 G2 P S3 G3 S4#3 2 2 4 S1 G1 S2 P1 G2 S3 P2 S4#4 2 2 4 S1 G1 S2 P1 P2

8、 S3 G3 S4#5 2 2 4 S1 G1 P1 S2 S3 G2 P2 S4对于单电源的情况下:方案 2 比方案 1 减少了相邻布线层,增加了主电源与对应地相邻,保证了所有信号层与地平面相邻,代价是:牺牲一布线层;对于双电源的情况:推荐采用方案 3,方案 3 兼顾了无相邻布线层、层压结构对称、主电源与地相邻等优点,但 S4 应减少关键布线;方案 4:无相邻布线层、层压结构对称,但电源平面阻抗较高;应适当加大 3-4、5-6,缩小 2-3、6-7 之间层间距;方案 5:与方案 4 相比,保证了电源、地平面相邻;但 S2、S3 相邻,S4 以 P2 作参考平面;对于底层关键布线较少以及 S2

9、、S3 之间的线间窜扰能控制的情况下此方案可以考虑;*十层板:推荐方案 2、3、可用方案 1、4方案 3:扩大 3-4 与 7-8 各自间距,缩小 5-6 间距,主电源及其对应地应置于 6、7 层;优选布线层 S2、S3、S4,其次 S1、S5;本方案适合信号布线要求相差不大的场合,兼顾了性能、成本;推荐大家使用;但需注意避免 S2、S3 之间平行、长距离布线;方案 4: EMC 效果极佳,但与方案 3 比,牺牲一布线层;在成本要求不高、EMC 指标要求较高、且必须双电源层的关键单板,建议采用此种方案;优选布线层 S2、S3,对于单电源层的情况,首先考虑方案 2,其次考虑方案 1。方案 1 具

10、有明显的成本优势,但相邻布线过多,平行长线难以控制;*十二层板:推荐方案 2、3,可用方案 1、4、备用方案 5方案 2、4 具有极好的 EMC 性能,方案 1、3 具有较佳的性价比;以上层排布作为一般原则,仅供参考,具体设计过程中大家可根据需要的电源层数、布线层数、特殊布线要求信号的数量、比例以及电源、地的分割情况,结合以上排布原则灵活掌握。EMC 问题 在布板的时候还应该注意 EMC 的抑制!这很不好把握,分布电容随时存在!如何接地: PCB 设计原本就要考虑很多的因素,不同的环境需要考虑不同的因素。地的分割与汇接接地是抑制电磁干扰、提高电子设备 EMC 性能的重要手段之一。正确的接地既能

11、提高产品抑制电磁干扰的能力,又能减少产品对外的 EMI 发射。接地的含义电子设备的“地”通常有两种含义:一种是“大地”(安全地),另一种是“系统基准地”(信号地)。接地就是指在系统与某个电位基准面之间建立低阻的导电通路。“接大地”就是以地球的电位为基准,并以大地作为零电位,把电子设备的金属外壳、电路基准点与大地相连接。 把接地平面与大地连接,往往是出于以下考虑:A、提高设备电路系统工作的稳定性;B、静电泄放;C、为工作人员提供安全保障。接地的目的A、安全考虑,即保护接地;B、为信号电压提供一个稳定的零电位参考点(信号地或系统地);C、屏蔽接地。基本的接地方式电子设备中有三种基本的接地方式:单点

12、接地、多点接地、浮地。单点接地:单点接地是整个系统中,只有一个物理点被定义为接地参考点,其他各个需要接地的点都连接到这一点上。适用于频率较低的电路中(1MHZ 以下)。若系统的工作频率很高,以致工作波长与系统接地引线的长度可比拟时,单点接地方式就有问题了。当地线的长度接近于 1/4 波长时,它就象一根终端短路的传输线,地线的电流、电压呈驻波分布,地线变成了辐射天线,而不能起到“地”的作用。为了减少接地阻抗,避免辐射,地线的长度应小于 1/20 波长。在电源电路的处理上,一般可以考虑单点接地。对于大量采用的数字电路的 PCB,由于其含有丰富的高次谐波,一般不建议采用单点接地方式。多点接地: 多点

13、接地是指设备中各个接地点都直接接到距它最近的接地平面上,以使接地引线的长度最短。多点接地电路结构简单,接地线上可能出现的高频驻波现象显著减少,适用于工作频率较高的(10MHZ)场合。但多点接地可能会导致设备内部形成许多接地环路,从而降低设备对外界电磁场的抵御能力。在多点接地的情况下,要注意地环路问题,尤其是不同的模块、设备之间组网时。地线回路导致的电磁干扰:理想地线应是一个零电位、零阻抗的物理实体。但实际的地线本身既有电阻分量又有电抗分量,当有电流通过该地线时,就要产生电压降。地线会与其他连线(信 号、电源线等)构成回路,当时变电磁场耦合到该回路时,就在地回路中产生感应电动势,并由地回路耦合到

14、负载,构成潜在的 EMI 威胁。浮地浮地是指设备地线系统在电气上与大地绝缘的一种接地方式。由于浮地自身的一些弱点,不太适合一般的大系统中,其接地方式很少采用关于接地方式的一般选取原则:对于给定的设备或系统,在所关心的最高频率(对应波长为)入上,当传输线的长度L入,则视为高频电路,反之,则视为低频电路。根据经验法则,对于低于 1MHZ 的电路,采用单点接地较好;对于高于 10MHZ,则采用多点接地为佳。对于介于两者之间的频率而言,只要最长传输线的长度 L 小于/20 入,则可采用单点接地以避免公共阻抗耦合。对于接地的一般选取原则如下:(1)低频电路(10MHZ),建议采用多点接地;(3)高低频混合电路,混合接地。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 机械制造 > PCB

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报