1、液压与气压传动课程设计说明书题目:卧式单面多轴钻孔组合机床液压传动系统设计院系:专业:班级:姓名:学号:指导教师:日期:2013 年 7 月 18 日目 录一、设计要求及工况分析 .3二、确定液压系统主要参数5三、拟定液压系统原理图. 7四、计算和选择液压件8五 、液压缸设计基础.115.1 液压缸的轴向尺寸.115.2 主要零件强度校核.11六、验算液压系统性能14七、设计小结17一、设计要求及工况分析 1.设计要求要求设计一台卧式单面多轴钻孔组合机床动力滑台的液压系统。要求实现的动作顺序为:快进工进快退停止。液压系统的主要参数与性能要求如下:轴向切削力总和 Fe=30500N,移动部件总重
2、量 G19800N;快进行程为 100mm,快进与快退速度 0.1m/s,工进行程为 50mm,工进速度为 0.88mm/s,加速、减速时间均为 0.2s,利用平导轨,静摩擦系数 0.2;动摩擦系数为0.1。液压系统的执行元件使用液压缸。2.负载与运动分析(1)工作负载 工作负载即为切削阻力 NFe305(2)摩擦负载 摩擦负载即为导轨的摩擦阻力fF静摩擦阻力 s961802.动摩擦阻力 fd(3)惯性负载 1010NN2.0 1.08.919800i tgGF (4) 运动时间快进 svLt1.01工进 t 8.568.2快退 svLt .1.0)1(331 设液压缸的机械效率 =0.9,得
3、出液压缸在各阶段的负载和推力,如表 1 所cm列。表 1 液压缸在各运动阶段的负载和推力( =0.9)cm根据液压缸在上述各阶段内的负载和运动时间,即可绘制出负载循环图 F-t 和速度循环图 -t,如图 1 所示。图 1 速度负载循环图 a)工作循环图 b)负载速度图 c)负载速度图工况 计算公式 负载值 F/N 液压缸推力 F/ /Nw启动 fsF3960 4400加速 mfd2990 3322快进 f 1980 2200工进 tfdF32480 36089反向启动 fs3960 4400加速 mfd2990 3322快退 fF1980 2200图 1 F-t 与 -t 图二、确定液压系统主
4、要参数1.初选液压缸工作压力所设计的动力滑台在工进时负载最大,在其他工况负载都不太高,参考表 2 和表 3,初选液压缸的工作压力 =4MPa。1p2计算液压缸主要尺寸鉴于动力滑台快进和快退速度相等,这里的液压缸可选用单活塞杆式差动液压缸(A 1=2A2) ,快进时液压缸差动连接。工进时为防止孔钻通时负载突然消失发生前冲现象,液压缸的回油腔应有背压,参考表 4 选此背压为 p2=0.6MPa。表 2 按负载选择工作压力负载/ KN 50工作压力/MPa 0.81 1.52 2.53 34 45 5表 3 各种机械常用的系统工作压力机 床机械类型磨床 组合机床龙门刨床拉床农业机械小型工程机械建筑机
5、械液压凿岩机液压机大中型挖掘机重型机械起重运输机械工作压力/MPa 0.82 35 28 810 1018 2032表 4 执行元件背压力系统类型 背压力 /MPa简单系统或轻载节流调速系统 0.20.5回油路带调速阀的系统 0.40.6回油路设置有背压阀的系统 0.51.5用补油泵的闭式回路 0.81.5回油路较复杂的工程机械 1.23回油路较短且直接回油 可忽略不计表 5 按工作压力选取 d/D工作压力/MPa 5.0 5.07.0 7.0d/D 0.50.55 0.620.70 0.7表 6 按速比要求确定 d/D2/ 1 1.15 1.25 1.33 1.46 1.61 2d/D 0.
6、3 0.4 0.5 0.55 0.62 0.71注: 1无杆腔进油时活塞运动速度;2有杆腔进油时活塞运动速度。由于工作进给速度与快速运动速度差别较大,且快进、快退速度要求相等,从降低总流量需求考虑,应确定采用单杆双作用液压缸的差动连接方式。通常利用差动液压缸活塞杆较粗、可以在活塞杆中设置通油孔的有利条件,最好采用活塞杆固定,而液压缸缸体随滑台运动的常用典型安装形式。这种情况下,应把液压缸设计成无杆腔工作面积 是有杆腔工作面积 两倍的形式,1A2A即活塞杆直径 d 与缸筒直径 D 呈 d = 0.707D 的关系。工进过程中,当孔被钻通时,由于负载突然消失,液压缸有可能会发生前冲的现象,因此液压
7、缸的回油腔应设置一定的背压(通过设置背压阀的方式),选取此背压值为 p2=0.6MPa。快进时液压缸虽然作差动连接(即有杆腔与无杆腔均与液压泵的来油连接) ,但连接管路中不可避免地存在着压降 ,且有杆腔的压力必须大于无杆腔,估算时取 0.5MPa。快退时回油p腔中也是有背压的,这时选取被压值 0.7MPa。工进时液压缸的推力计算公式为 c12/mFAp因此,根据已知参数,液压缸无杆腔的有效作用面积可计算为因此,根据已知参数,液压缸无杆腔的有效作用面积可计算为 23621 105.97)2/.04(9.38pFAmc液压缸缸筒直径为mm14AD由于有前述差动液压缸缸筒和活塞杆直径之间的关系,d
8、= 0.707D,因此活塞杆直径为d=0.707111=78mm,根据 GB/T23481993 对液压缸缸筒内径尺寸和液压缸活塞杆外径尺寸的规定,圆整后取液压缸缸筒直径为 D=110mm,活塞杆直径为 d=80mm。此时液压缸两腔的实际有效面积分别为: 24211095mA27.d根据计算出的液压缸的尺寸,可估算出液压缸在工作循环中各阶段的压力、流量和功率,如表 4 所示。由此绘制的液压缸工况图如图 2 所示。表 7 液压缸在各阶段的压力、流量和功率值工况 推力F0/N回油腔压力p2/MPa进油腔压力p1/MPa输入流量q10-3/m3/s输入功率P/KW计算公式启动4400 1.32 加速
9、3322 p1+p 1.10 快进恒速2200 p1+p 0.88 0.50 0.44210APFp)(q1工进 36089 0.6 4.08 0.8410-2 0.034120ApF2qP1启动4400 0.98 加速3322 0.7 2.23 快退恒速2200 0.7 1.98 0.45 0.8920ApF3qP1注:1. p 为液压缸差动连接时,回油口到进油口之间的压力损失,取 p=0.5MPa。2 快退时,液压缸有杆腔进油,压力为 p1,无杆腔回油,压力为 p2。三、拟定液压系统原理图1选择基本回路(1) 选择调速回路 由图 2 可知,这台机床液压系统功率较小,滑台运动速度低,工作负载
10、为阻力负载且工作中变化小,故可选用进口节流调速回路。为防止孔钻通时负载突然消失引起运动部件前冲,在回油路上加背压阀。由于系统选用节流调速方式,系统必然为开式循环系统。(2) 选择油源形式 从工况图可以清楚看出,在工作循环内,液压缸要求油源提供快进、快退行程的低压大流量和工进行程的高压小流量的油液。最大流量与最小流量之比 qmax/qmin=0.5/(0.8410-2)=59.5;其相应的时间之比( t1+t3)/t2=(1+1.5)/56.8=0.04。这表明在一个工作循环中的大部分时间都处于高压小流量工作。从提高系统效率、节省能量角度来看,选用单定量泵油源显然是不合理的,为此可选用限压式变量
11、泵或双联叶片泵作为油源。考虑到前者流量突变时液压冲击较大,工作平稳性差,且后者可双泵同时向液压缸供油实现快速运动,最后确定选用双联叶片泵方案。(3) 选择快速运动和换向回路 本系统已选定液压缸差动连接和双泵供油两种快速运动回路实现快速运动。考虑到从工进转快退时回油路流量较大,故选用换向时间可调的电液换向阀式换向回路,以减小液压冲击。由于要实现液压缸差动连接,所以选用三位五通电液换向阀。(4) 选择速度换接回路 由于本系统滑台由快进转为工进时,速度变化大( 1/ 2=0.1/(0.8410-3)=113) ,为减少速度换接时的液压冲击,选用行程阀控制的换接回路。(5) 选择调压和卸荷回路 在双泵
12、供油的油源形式确定后,调压和卸荷问题都已基本解决。即滑台工进时,高压小流量泵的出口压力由油源中的溢流阀调定,无需另设调压回路。在滑台工进和停止时,低压大流量泵通过液控顺序阀卸荷,高压小流量泵在滑台停止时虽未卸荷,但功率损失较小,故可不需再设卸荷回路。图 2 液压缸工况图2组成液压系统将上面选出的液压基本回路组合在一起,并经修改和完善,就可得到完整的液压系统工作原理图,如上图所示。在上图中,为了解决滑台工进时进、回油路串通使系统压力无法建立的问题,增设了单向阀。为了避免机床停止工作时回路中的油液流回油箱,导致空气进入系统,影响滑台运动的平稳性,图中添置了一个单向阀。考虑到这台机床用于钻孔(通孔与
13、不通孔)加工,对位置定位精度要求较高,图中增设了一个压力继电器。当滑台碰上死挡块后,系统压力升高,它发出快退信号,操纵电液换向阀换向。四、计算和选择液压件1确定液压泵的规格和电动机功率(1) 计算液压泵的最大工作压力小流量泵在快进和工进时都向液压缸供油,由表 7 可知,液压缸在工进时工作压力最大,最大工作压力为 p1=4.08MPa,如在调速阀进口节流调速回路中,选取进油路上的总压力损失p=0.6MPa,考虑到压力继电器的可靠动作要求压差 pe=0.5MPa,则小流量泵的最高工作压力估算为 1 (3.960.5).01peMa大流量泵只在快进和快退时向液压缸供油,由表 7 可见,快退时液压缸的
14、工作压力为p1=2.23MPa,比快进时大。考虑到快退时进油不通过调速阀,故其进油路压力损失比前者小,现取进油路上的总压力损失p=0.3MPa ,则大流量泵的最高工作压力估算为21(.430)1.73p Mpa(2) 计算液压泵的流量由表 7 可知,油源向液压缸输入的最大流量为 0.510-3 m3/s ,若取回路泄漏系数 K=1.1,则两个泵的总流量为L/min33/sm1055.0/sm105.01.1 33331p Kqq考虑到溢流阀的最小稳定流量为 3L/min,工进时的流量为 0.8410-5 m3/s =0.47L/min,则小流量泵的流量最少应为 3.47L/min。(3) 确定
15、液压泵的规格和电动机功率根据以上压力和流量数值查阅产品样本,并考虑液压泵存在容积损失,最后确定选取PV2R12-6/33 型双联叶片泵。其小流量泵和大流量泵的排量分别为 6mL/r 和 33mL/r,当液压泵的转速 np=940r/min 时,其理论流量分别为 5.6 L/min 和 31L/min,若取液压泵容积效率 v=0.9,则液压泵的实际输出流量为 L/min3/i9.2715 L/in10/9.4046ppq由于液压缸在快退时输入功率最大,若取液压泵总效率 p=0.8,这时液压泵的驱动电动机功率为KW17.1KW108.060 10331070.1336ppp qpP根据此数值查阅产
16、品样本,选用规格相近的 Y100L6 型电动机,其额定功率为 1.5KW,额定转速为 940r/min。2.确定其他元件及辅件(1) 确定阀类元件及辅件根据系统的工作压力和通过各阀类元件及辅件的实际流量,查阅产品样本,可选出这些元件的型号及规格,表 6 所列为选择元件的一个方案。表 6 液压元件规格及型号规格序号 元件名称通过的最大流量q/L/min型号 额定流量/L/minnq额定压力/MPanp额定压降 /MPan1 双联叶片泵 2.5/321YB(2.5/32) 6.3 2 三位五通电液换向阀70 35DY100BY 100 6.3 0.33 行程阀 62.3 22C-100BH 100
17、 6.3 0.34 调速阀 1 Q-6B 6 6.3 5 单向阀 70 1-100B 100 6.3 0.26 单向阀 29.3 1-63B 50 6.3 0.37 背压阀 1 B-10B 10 6.3 8 顺序阀 28.1 XY-63B 63 6.3 0.39 单向阀 70 1-100B 100 6.3 0.210 单向阀 27.9 1-63B 63 6.3 0.211 过滤器 36.6 XU-50X200 50 12 压力表开关 K-6B 6.3 13 溢流阀 5.1 Y10B 10 6.3 *注:此为电动机额定转速为 940r/min 时的流量。(2) 确定油管在选定了液压泵后,液压缸在
18、实际快进、工进和快退运动阶段的运动速度、时间以及进入和流出液压缸的流量,与原定数值不同,重新计算的结果如表 7 所列。表 9 各工况实际运动速度、时间和流量快进 工进 快退L/min3.62/i7.495)1(2p1AqL/min5.01qL/min3/i)9.2715(pqL/in3.2957.461AqL/min24.0L/min957.445.01212* AAqq L/min70.495312Aqm/s109. /s10)7.45(6.4321pAqm/s10824.0m/s109560 1047.0343 112 Aq /s123.0/7464213Aqs38.1s109.0 101
19、50 31 ts1.34s1088.0 1030332ts46.1s123.0 10180 33 t由表可以看出,液压缸在各阶段的实际运动速度符合设计要求。根据表 9 数值,按表 10 推荐的管道内允许速度取 =4 m/s,由式 qd4计算得与液压缸无杆腔和有杆腔相连的油管内径分别为m2.18041.360243qd .9.73为了统一规格,按产品样本选取所有管子均为内径 20mm、外径 28mm 的 10 号冷拔钢管。(3) 确定油箱油箱的容量按式 pnqV估算,其中 为经验系数,低压系统, =24;中压系统,=57 ;高压系统,=612。现取 =6,得 Lqp2075.346五 、液压缸设
20、计基础5.1 液压缸的轴向尺寸液压缸轴向长度取决于负载运行的有效长度(活塞在缸筒内能够移动的极限距离)、导向套长度、活塞宽度、缸底、缸盖联结形式及其固定安装形式。图示出了液压缸各主要零件轴向尺寸之间的关系。活塞宽度 DB)0.16(。活塞有效行程 1L取决于主机运动机构的最大行程, =0.15+0.03=0.18m。导向长度1L,mDL62102401缸筒长度 。7501)3(5.2 主要零件强度校核5.2.1 缸筒壁厚 =5mm因为方案是低压系统,校核公式 2eDP, 1.0式中: -缸筒壁厚( m)eP-实验压力 1e)5.2(,其中 1p是液压缸的额定工作压力D-缸筒内径 D=0.11m
21、-缸筒材料的许用应力。 , 为材料抗拉强度(MPa),n 为安全系数,nb/b取 n=5。对于 P116MPa.材料选 45 号调质钢,对于低压系统mDPe 3.102.45.6因此满足要求。5.2.2 缸底厚度 1=11mm1.缸底有孔时: mPDde 069.2316.045.34.043.021 其中 md 218202.缸底无孔时,用于液压缸快进和快退; mPDe 97.10104534.043.0 621 其中 2125.2.3 杆径 dF4d,式中 F 是杆承受的负载(N)F=36089N是杆材料的许用应力, =100 aMPmd0214.14.36895.2.4 缸盖和缸筒联接螺
22、栓的底径 d1zKFd 02.164.38952.561 式中 K-拧紧系数,一般取 K=1.251.5;F-缸筒承受的最大负载(N);z-螺栓个数;-螺栓材料的许用应力, , 为螺栓材料的屈服点ns/s(MPa),安全系数 n=1.22.5 5.2.5 液压缸稳定性计算液压缸承受的负载 F 超过某临界值 cF时将会失去稳定性。稳定性可用下式校核: NncC79.63.20式中 nc- 稳定性安全系数 , -4,取 nc=3;2cn由于缸筒固定活塞动, ,由杆材料知硬钢,因此 412mddAJrc 02.48.1646224 NrlafFcC 6282 103.)0.(51.9.)(1 nNc
23、C6617.3.7850因此满足稳定性要求。5.2.6 液压缸缓冲压力液压缸设置缓冲压力装置时要计算缓缓从压力 cp,当 c值超过缸筒、缸底强度计算的 maxp时,则以 cp取代 max。在缓冲时,缓冲腔的机械能力为 eE,活塞运动的机械能为 E。活塞在机械能守恒中运行至终点。clAc cflFvp21式中: EccplA) 。力 (所 有 缓 冲 过 程 中 的 摩 擦 ) ;缓 冲 运 行 的 速 度 ( )运 动 部 件 的 总 质 量 ()缓 冲 行 程 长 度 ( )(缓 冲 腔 中 活 塞 有 效 面 积 NFsmvmlAcc- ;kg;f 2通过验算,液压缸强度和稳定性足以满足要
24、求。六、验算液压系统性能1验算系统压力损失由于系统管路布置尚未确定,所以只能估算系统压力损失。估算时,首先确定管道内液体的流动状态,然后计算各种工况下总的压力损失。现取进、回油管道长为 l=2m,油液的运动粘度取=110-4m2/s,油液的密度取 =0.9174103kg/m3。(1) 判断流动状态在快进、工进和快退三种工况下,进、回油管路中所通过的流量以快退时回油流量q2=70L/min 为最大,此时,油液流动的雷诺数 743102067443e dqR也为最大。因为最大的雷诺数小于临界雷诺数(2000) ,故可推出:各工况下的进、回油路中的油液的流动状态全为层流。(2) 计算系统压力损失将
25、层流流动状态沿程阻力系数 qdR475e和油液在管道内流速 2d同时代入沿程压力损失计算公式lp,并将已知数据代入后,得 qqqdlp 84341 10547.)102(4.329705275 可见,沿程压力损失的大小与流量成正比,这是由层流流动所决定的。在管道结构尚未确定的情况下,管道的局部压力损失p 常按下式作经验计算l.p各工况下的阀类元件的局部压力损失可根据下式计算2nvqp其中的 pn 由产品样本查出,q n 和 q 数值由表 8 和表 9 列出。滑台在快进、工进和快退工况下的压力损失计算如下:1快进滑台快进时,液压缸通过电液换向阀差动连接。在进油路上,油液通过单向阀 10、电液换向
26、阀 2,然后与液压缸有杆腔的回油汇合通过行程阀 3 进入无杆腔。在进油路上,压力损失分别为 MPa0568.Pa160.215478.015478.0 63li qp .M58liip Pa1647.0a103.2.103.109.27. 2vi pM23568viilii p在回油路上,压力损失分别为 Pa0675.Pa1603.2915478.015478.0 6lo qp 2.Ma5loop Pa1594.0103.10329.103.29.vo pM82675vooloo p将回油路上的压力损失折算到进油路上去,便得出差动快速运动时的总的压力损失 Pa31.0Ma95.418.0273
27、. 2工进滑台工进时,在进油路上,油液通过电液换向阀 2、调速阀 4 进入液压缸无杆腔,在调速阀 4处的压力损失为 0.5MPa。在回油路上,油液通过电液换向阀 2、背压阀 8 和大流量泵的卸荷油液一起经液控顺序阀 7 返回油箱,在背压阀 8 处的压力损失为 0.6MPa。若忽略管路的沿程压力损失和局部压力损失,则在进油路上总的压力损失为 MPa5.0.105.3.2vii p此值略小于估计值。在回油路上总的压力损失为MPa6.0a639.274.06.1024.3voo p该值即为液压缸的回油腔压力 p2=0.66MPa,可见此值与初算时参考表 4 选取的背压值基本相符。按表 7 的公式重新
28、计算液压缸的工作压力为 Pa9.3Ma10957.46.34641201 ApF此略高于表 7 数值。考虑到压力继电器的可靠动作要求压差 pe=0.5MPa,则小流量泵的工作压力为 a9.450.9.3i1p 此值与估算值基本相符,是调整溢流阀 10 的调整压力的主要参考数据。3快退滑台快退时,在进油路上,油液通过单向阀 10、电液换向阀 2 进入液压缸有杆腔。在回油路上,油液通过单向阀 5、电液换向阀 2 和单向阀 13 返回油箱。在进油路上总的压力损失为 MPa048.a103.109.7.2vii p此值远小于估计值,因此液压泵的驱动电动机的功率是足够的。在回油路上总的压力损失为 Pa3
29、4.0a1072.1073.1072. 22voo p此值与表 7 的数值基本相符,故不必重算。大流量泵的工作压力为 MPa484312p ip此值是调整液控顺序阀 7 的调整压力的主要参考数据。2验算系统发热与温升由于工进在整个工作循环中占 96%,所以系统的发热与温升可按工进工况来计算。在工进时,大流量泵经液控顺序阀 8 卸荷,其出口压力即为油液通过液控顺序阀的压力损失 Pa058.a639.27.02n2p q液压系统的总输入功率即为液压泵的输入功率W4.564W8.0 60109.27100588.060101.51099.4 3636p2p2p1p1prqpqpP液压系统输出的有效功
30、率即为液压缸输出的有效功率W7.2108.3432c FP由此可计算出系统的发热功率为 .56.7.56crH按式 KAT计算工进时系统中的油液温升,即 15201506.7.3065.32 VKC其中传热系数 K=15 W/(m 2C) 。设环境温 T2=25C,则热平衡温度为 11 TC 油温在允许范围内,油箱散热面积符合要求,不必设置冷却器七、设计小结课程设计是机械设计当中的非常重要的一环,本次课程设计时间一周略显得仓促一些。但是通过本次每天都过得很充实的课程设计,从中得到的收获还是非常多的。 这次课程设计,由于理论知识的不足,再加上平时没有什么设计经验,一开始的时候有些手忙脚乱,不知从
31、何入手。在老师的谆谆教导,和同学们的热情帮助下,使我找到了信心。现在想想其实课程设计当中的每一天都是很累的,其实正向老师说得一样,机械设计的课程设计没有那么简单,虽然种种困难我都已经克服,但是还是难免我有些疏忽和遗漏的地方。完美总是可望而不可求的,不在同一个地方跌倒两次才是最重要的。抱着这个心理我一步步走了过来,最终完成了我的任务。从设计过程中,我复习了以前学过的知识,画图水平有所提高,Word 输入、排版的技巧也有所掌握,这些应该是我最大的收获。设计是一个系统性的工程,越做到后面,越发现自己知识的局限性,在今后的学习中,还得更加努力学习。参考文献1 王积伟,章宏甲,黄谊.液压传动.第二版.北京:机械工业出版社,206.12(20108 重印)2 马振福.液压与气动传动.第二版.北京:机械工业出版社,2004.13 成大先.机械设计手册单行本液压传动. 北京:化学工业出版社, 20044 陈启松.液压传动与控制手册M. 上海:上海科学技术出版社, 2006