收藏 分享(赏)

The Econometric Modelling of Financial Time Series.doc

上传人:dzzj200808 文档编号:4352814 上传时间:2018-12-24 格式:DOC 页数:206 大小:315KB
下载 相关 举报
The Econometric Modelling of Financial Time Series.doc_第1页
第1页 / 共206页
The Econometric Modelling of Financial Time Series.doc_第2页
第2页 / 共206页
The Econometric Modelling of Financial Time Series.doc_第3页
第3页 / 共206页
The Econometric Modelling of Financial Time Series.doc_第4页
第4页 / 共206页
The Econometric Modelling of Financial Time Series.doc_第5页
第5页 / 共206页
点击查看更多>>
资源描述

1、The Econometric Modelling of Financial Time SeriesThisisthesubstantiallyrevisedandupdatedsecondeditionofTerenceMillsbest-sellinggraduatetextbookTheEconometricModellingofFinancialTimeSeries.Thebookprovidesdetailedcoverageofthevarietyofmodelsthatarecurrentlybeingusedintheempiricalanalysisof?nancialmar

2、kets.Coveringbond,equityandforeignexchangemarkets,itisaimedatscholarsandpracti-tionerswishingtoacquireanunderstandingofthelatestresearchtechniquesand?ndings,andalsograduatestudentswishingtoresearchinto?nancialmarkets.Thissecondeditionincludesagreatdealofnewmaterialthathasbeendevel-opedinthelastsixye

3、ars,andalsoprovidesamorein-depthtreatmentoftwocrucial,andrelated,areas:thetheoryofintegratedprocessesandcointegration.Completelynewmaterialdiscussesthedistributionalpropertiesofassetreturnsandrecentandnoveltechniquesofanalysingandinterpretingvectorautoregres-sionsthatcontainintegratedandpossiblycoin

4、tegratedvariables.TerenceMillsisProfessorofEconomicsatLoughboroughUniversity.HeobtainedhisPh.8D.attheUniversityofWarwick,lecturedattheUniversityofLeeds,andhasheldprofessorialappointmentsatCityUniversityBusinessSchoolandtheUniversityofHull.Hehasover100publications,includingarticlesintheAmericanEconom

5、icReview,JournalofEconometricsandJournalofAppliedEconometrics.Dataappendixavailableon/.lboro.ac.uk/departments/ec/cup/.TheEconometricModellingofFinancialTimeSeriesSecondeditionTerenceC.MillsProfessorofEconomics,LoughboroughUniversityPUBLISHED BY CAMBRIDGE UNIVERSITY PRESS (VIRTUAL PUBLISHING) FOR AN

6、D ON BEHALF OF THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge CB2 IRP 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia /.cambridge.org ? Cambridge University Press 1999 This edition ? Cam

7、bridge University Press (Virtual Publishing) 2003 First published in printed format 1993 Second edition 1999 A catalogue record for the original printed book is available from the British Library and from the Library of Congress Original ISBN 0 521 62413 4 hardback Original ISBN 0 521 62492 4 paperb

8、ack (Second edition) ISBN 0 511 01200 4 virtual (eBooks4 Edition) ContentsPrefacetosecondeditionpagevii1Introduction12Univariatelinearstochasticmodels:basicconcepts82.1Stochasticprocesses,ergodicityandstationarity82.2Stochasticdifferenceequations112.3ARMAprocesses132.4Linearstochasticprocesses282.5A

9、RMAmodelbuilding282.6Non-stationaryprocessesandARIMAmodels372.7ARIMAmodelling482.8ForecastingusingARIMAmodels533Univariatelinearstochasticmodels:furthertopics613.1Determiningtheorderofintegrationofatimeseries623.2Decomposingtimeseries:unobservedcomponentmodelsandsignalextraction993.3Measuresofpersis

10、tenceandtrendreversion1073.4Fractionalintegrationandlongmemoryprocesses1144Univariatenon-linearstochasticmodels1224.1Martingales,randomwalksandnon-linearity1224.2Testingtherandomwalkhypothesis1244.3Stochasticvolatility1264.4ARCHprocesses1314.5Othernon-linearunivariatemodels1534.6Testingfornon-linear

11、ity171vviContents5Modellingreturndistributions1775.1Descriptiveanalysisofthreereturnseries1775.2Twomodelsforreturndistributions1785.3Determiningthetailshapeofareturnsdistribution1845.4Empiricalevidenceontailindices1885.5Testingforcovariancestationarity1935.6Modellingthecentralpartofreturnsdistributi

12、ons1965.7Dataanalyticmodellingofskewnessandkurtosis1985.8Distributionalpropertiesofabsolutereturns2005.9Summaryandfurtherextensions2036Regressiontechniquesfornon-integrated?nancialtimeseries2056.1Regressionmodels2056.2ARCH-in-meanregressionmodels2186.3Misspeci?cationtesting2216.4Robustestimation2336

13、.5Themultivariatelinearregressionmodel2356.6Vectorautoregressions2386.7Variancedecompositions,innovationaccountingandstructuralVARs2456.8VectorARMAmodels2487Regressiontechniquesforintegrated?nancialtimeseries2537.1Spuriousregression2537.2Cointegratedprocesses2607.3Testingforcointegrationinregression

14、2687.4Estimatingcointegratingregressions2737.5VARswithintegratedvariables2797.6CausalitytestinginVECMs2977.7Fullymodi?edVARestimation2997.8Impulseresponseasymptoticsinnon-stationaryVARs3028Furthertopicsintheanalysisofintegrated?nancialtimeseries3068.1Testingforasinglelong-runrelationship3068.2Common

15、trendsandcycles3108.3EstimatingpermanentandtransitorycomponentsofaVECM3158.4Presentvaluemodels,excessvolatilityandcointegration3188.5Generalisationsandextensionsofcointegrationanderrorcorrectionmodels334Dataappendix340References342PrefacetothesecondeditionInthesixyearssinceIcompletedthemanuscriptfor

16、the?rsteditionofTheEconometricModellingofFinancialTimeSeries,therehavebeenmanyadvancesintimeserieseconometrics,someofwhichhavebeenindirectresponsetofeaturesfoundinthedatacomingfrom?nancialmarkets,whileothershavefoundreadyapplicationin?nancial?elds.Incorporatingthesedevelopments,andomittingsometechni

17、questhathavesincefallenoutoffavour,hasledtoasecondeditionratherdifferenttothe?rst.Althoughthebasicstructureofthebookremainsthesame,itisworthpointingoutthesechangesinsomedetail.Chapters1and2remainessentiallythesame,althoughexampleshavebeenupdated.Itisinchapter3thatthe?rstmajorchangesappear.Likeitorno

18、t,theanalysisofunitrootshascometodominatemuchoftimeserieseconometricsduringthe1990s.Althoughmuchoftherecentpub-lishedresearchonunitrootshasbeenhighlytechnicalwithoutbeingparticularlyilluminating,Ifeltthatamoreformalanalysisofunitroottestingandinferencethanappearedinthe?rsteditionwaswarranted.Tothise

19、nd,thereisnowamoredetailedtreatmentoftheasymptoticdis-tributionsofthevariousteststatisticsandanemphasisonMonteCarlosimulationtoobtainestimatesofthesedistributionsandhencecriticalvalues.Newerdevelopmentsincorporatingbreakingandevolvingtrendsandstochasticunitrootsarealsodiscussed.Thischapteralsoinclud

20、esarathermoredetailedtreatmentoffractionallyintegratedprocesses.Evidenceofnon-linearityin?nancialtimeserieshasaccumulatedovertheyears,althoughtheinitialenthusiasmatthestartofthedecadeforchaoticdynamicshasratherdissipated.StochasticvariancemodelsandthemanyextensionsoftheARCHprocesshavebecomeverypopul

21、ar,thelatterleadingtoanimpressivearrayofacronyms!Bothoftheseclassesofmodelsareanalysedingreaterdetailthanbeforeinchapter4.Arti?cialneuralnetworksalsohavetheirdevotees,andthesearealsonowbrie?ydiscussedinthischapter.Non-linearitygoeshand-in-handwithviiviiiPrefacetothesecondeditionnon-normality,andthec

22、ompletelynewchapter5looksatvariousmeth-odsofmodellingreturndistributionsandtransformationsofreturns,introducingawealthoftechniquesthathaveonlyrecentlymadetheirappearanceintheliterature.Muchofthematerialofchapter6(previouslychapter5)remainsasbefore,althoughnewsectionsonGMMandrobustestimationandtest-i

23、ngparameterstabilityareincludedandalternativemethodsofcomput-ingvariancedecompositionsareintroduced.Asdevelopmentsintheanalysisofunitrootsinunivariatetimeseriesledtomanychangesinchapter3,soanalogousdevelopmentsintheanalysisofunitrootsandcointegrationinamultivariateframeworkhasledtoacompleterewriting

24、ofthechapter,nowchapter7,onregressiontechniquesforintegrated?nancialtimeseries.Amoreformalapproachistakenhereaswell,withMonteCarlosimulationagainbeingusedtobringoutthedifferencesinthevariousasymptoticdistributionsofestimatorsthatresultfromalter-nativesetups.TheVECMframeworkisnowusedtoanalysecointegr

25、a-tioninnon-stationaryVARs,andadetailedtreatmentofcausalitytesting,alternativeestimationmethods,andimpulseresponseasympto-ticsisalsoprovided.The?nalchapter,chapter8,introducesfurthertopicsintheanalysisofintegrated?nancialtimeseries,suchascommontrendsandcyclesandestimatingpermanentandtransitorycompon

26、ents,andlooksatsomenon-lineargeneralisationsofcointegrationanderrorcorrectionmechanisms.Italsoincludesmaterialonpresentvaluemodelsandexcessvolatility,butonlywithintheVARframework:thediscussionofthe?rstgenerationofexcessvolatilitytestshasbeenomittedfromthiseditionastheynolongerappeartobeused.Manynewe

27、xampleshavebeendevelopedusingseveralnewdatasets.IwouldliketothankChrisBrooksandScottSpearsforgenerouslysup-plyingtheirexchangerateandstockmarketdata,respectively,andRaphaelMarkellosforprovidingtheneuralnetworkexample.Mythanksalsogotothekindreviewersofthe?rsteditionandtothemanypeoplewhohavecontactedm

28、esincethebookappeared:theirencouragingcom-mentsconvincedmethatasecondeditionwasworthwhileembarkingupon.Sincetheappearanceofthe?rsteditionIhaveoncemorechangeduniversities.Loughboroughhasprovidedmewithaverycongenialatmo-sphereinwhichtoresearchandeventobeabletoteachsomeofthematerialcontainedinthebook!T

29、heproductionteamatCambridgeUniversityPresscontinuetodoa?nejob,andPatrickMcCartan,andnowAshwinRattan,canalwaysberelieduponforencouragementandsomeentertaininggossip!Finally,butofcoursetheyshouldbeattheheadofanylistofacknowledgements,mythanksandlovegotomyfamily,TheaandAlexa,andtomymother,Rose.1Introduc

30、tionTheaimofthisbookistoprovidetheresearcherin?nancialmarketswiththetechniquesnecessarytoundertaketheempiricalanalysisof?nancialtimeseries.Toaccomplishthisaimweintroduceanddevelopbothuni-variatemodellingtechniquesandmultivariatemethods,includingthoseregressiontechniquesfortimeseriesthatseemtobeparti

31、cularlyrelevanttothe?nancearea.Whydoweconcentrateexclusivelyontimeseriestechniqueswhen,forexample,cross-sectionalmodellingplaysanimportantroleinempiricalinvestigationsoftheCapitalAssetPricingModel(CAPM):see,asanearlyandin?uentialexample,FamaandMacBeth(1973)?Ouransweristhat,apartfromtheusualconsidera

32、tionsofpersonalexpertiseandinter-est,plusmanuscriptlengthconsiderations,itisbecausetimeseriesana-lysis,inbothitstheoreticalandempiricalaspects,hasbeenformanyyearsanintegralpartofthestudyof?nancialmarkets,withempiricalresearchbeginningwiththepapersbyWorking(1934),Cowles(1933,1944)andCowlesandJones(19

33、37).Workingfocusedattentiononapreviouslynotedcharacteristicofcommodityandstockprices:namely,thattheyresemblecumulationsofpurelyrandomchanges.Cowlesinvestigatedtheabilityofmarketanalystsand?nancialservicestopredictfuturepricechanges,?ndingthattherewaslittleevidencethattheycould.CowlesandJonesreported

34、evidenceofpositivecorrelationbetweensuccessivepricechangesbut,asCowles(1960)waslatertoremark,thiswasprobablyduetotheirtakingmonthlyaveragesofdailyorweeklypricesbeforecomputingchanges:aspuriouscorrelationphenomenonanalysedbyWorking(1960).Thepredictabilityofpricechangeshassincebecomeamajorthemeof?nanc

35、ialresearchbut,surprisingly,littlemorewaspublisheduntilKendalls(1953)study,inwhichhefoundthattheweeklychangesinawidevarietyof?nancialpricescouldnotbepredictedfromeitherpastchangesintheseriesorfrompastchangesinotherpriceseries.Thisseems12TheEconometricModellingofFinancialTimeSeriestohavebeenthe?rstex

36、plicitreportingofthisoft-quotedpropertyof?nancialprices,althoughfurtherimpetustoresearchonpricepredict-abilitywasonlyprovidedbythepublicationofthepapersbyRoberts(1959)andOsborne(1959).Theformerpresentsalargelyheuristicargu-mentforwhysuccessivepricechangesshouldbeindependent,whilethelatterdevelopsthe

37、propositionthatitisnotabsolutepricechangesbutthelogarithmicpricechangeswhichareindependentofeachother:withtheauxiliaryassumptionthatthechangesthemselvesarenormallydis-tributed,thisimpliesthatpricesaregeneratedasBrownianmotion.Thestimulationprovidedbythesepaperswassuchthatnumerousarticlesappearedover

38、thenextfewyearsinvestigatingthehypothesisthatpricechanges(orlogarithmicpricechanges)areindependent,ahypothesisthatcametobetermedtherandomwalkmodel,inrecogni-tionofthesimilarityoftheevolutionofapriceseriestotherandomstaggerofadrunk.Indeed,thetermrandomwalkisbelievedtohave?rstbeenusedinanexchangeofcor

39、respondenceappearinginNaturein1905(seePearsonandRayleigh,1905),whichwasconcernedabouttheoptimalsearchstrategyfor?ndingadrunkwhohadbeenleftinthemiddleofa?eld.Thesolutionistostartexactlywherethedrunkhadbeenplaced,asthatpointisanunbiasedestimateofthedrunksfuturepositionsincehewillpresumablystaggeralong

40、inanunpredictableandrandomfashion.ThemostnaturalwaytostateformallytherandomwalkmodelisasP?P?a?1:1?tt?1twherePisthepriceobservedatthebeginningoftimetandaisanerrortttermwhichhaszeromeanandwhosevaluesareindependentofeachother.Thepricechange, P?P?P,isthussimplyaandhencettt?1tisindependentofpastpricechan

41、ges.Notethat,bysuccessivebackwardsubstitutionin(1.1),wecanwritethecurrentpriceasthecumulationofallpasterrors,i.e.XtP?atii?1sothattherandomwalkmodelimpliesthatpricesareindeedgeneratedbyWorkingscumulationofpurelyrandomchanges.OsbornesmodelofBrownianmotionimpliesthatequation(1.1)holdsforthelogarithmsof

42、Pand,further,thataisdrawnfromazeromeannormaldistributiontthavingconstantvariance.Introduction3MostoftheearlypapersinthisareaarecontainedinthecollectionofCootner(1964),whileGrangerandMorgenstern(1970)provideadetaileddevelopmentandempiricalexaminationoftherandomwalkmodelandvariousofitsre?nements.Amazi

43、ngly,muchofthisworkhadbeenanticipatedbytheFrenchmathematicianLouisBachelier(1900,EnglishtranslationinCootner,1964)inaremarkablePh.D.thesisinwhichhedevelopedanelaboratemathematicaltheoryofspeculativeprices,whichhethentestedonthepricingofFrenchgovernmentbonds,?ndingthatsuchpriceswereconsistentwithther

44、andomwalkmodel.WhatmadethethesisevenmoreremarkablewasthatitalsodevelopedmanyofthemathematicalpropertiesofBrownianmotionwhichhadbeenthoughttohave?rstbeenderivedsomeyearslaterinthephysicalsciences,particularlybyEinstein!Yet,asMandelbrot(1989)remarks,Bachelierhadgreatdif?cultyinevengettinghimselfaunive

45、rsityappoint-ment,letalonegettinghistheoriesdisseminatedthroughouttheacademiccommunity!Itshouldbeemphasisedthattherandomwalkmodelisonlyahypoth-esisabouthow?nancialpricesmove.Onewayinwhichitcanbetestedisbyexaminingtheautocorrelationpropertiesofpricechanges:see,forexample,Fama(1965).Amoregeneralperspe

46、ctiveistoview(1.1)asaparticularmodelwithintheclassofautoregressive-integrated-movingaverage(ARIMA)modelspopularisedbyBoxandJenkins(1976).Chapter2thusdevelopsthetheoryofsuchmodelswithinthegeneralcontextof(univariate)linearstochasticprocesses.Weshouldavoidgivingtheimpressionthattheonly?nancialtimeseri

47、esofinterestarestockprices.Thereare?nancialmarketsotherthanthoseforstocks,mostnotablyforbondsandforeigncurrency,buttherealsoexistthevariousfutures,commodityandderivativemar-kets,allofwhichprovideinterestingandimportantseriestoanalyse.Forcertainofthese,itisbynomeansimplausiblethatmodelsotherthanthera

48、ndomwalkmaybeappropriateor,indeed,modelsfromaclassotherthantheARIMA.Chapter3discussesvarioustopicsinthegeneralana-lysisoflinearstochasticmodels,mostnotablythatofdeterminingtheorderofintegrationofaseriesand,associatedwiththis,theappropriatewayofmodellingtrendsandstructuralbreaks.Italsoconsidersmethod

49、sofdecomposinganobservedseriesintotwoormoreunobservedcompo-nentsandofdeterminingtheextentofthememoryofaseries,bywhichismeantthebehaviouroftheseriesatlowfrequenciesor,equivalently,intheverylongrun.Avarietyofexamplestakenfromthe?nanciallitera-tureareprovidedthroughoutthechapter.Duringthe1960smuchresearchwasalsocarriedoutonthetheoreticalfoundationsof?nancialmarkets,leadingtothedevelopmentofthe4TheEconometricModellingofFinancialTimeSeriestheoryofef?cientcapitalmarkets.AsLeRoy(1989)discusses,thisledtosomeseriousquestionsbeingrais

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 经营企划

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报