1、第28章 锐角三角函数,28.1 锐角三角函数,第1课时 正弦,问题1 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌现测得斜坡与水平面所成角的度数是30,为使出水口的高度为35m,那么需要准备多长的水管?,这个问题可以归结为,在RtABC中,C90,A30,BC35m,求AB的长.,思考:你能将实际问题归结为数学问题吗?,根据“在直角三角形中,30角所对的直角边等于斜边的一半”,即,在RtABC中,C90,A30,BC35m,求AB的长.,可得 AB=2BC=70m,即需要准备70m长的水管。,在上面的问题中,如果使出水口的高度为50
2、m,那么需要准备多长的水管?,结论:在一个直角三角形中,如果一个锐角等于30,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于 。,A,B,C,50m,30m,B ,C ,即在直角三角形中,当一个锐角等于45时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于 。,如图,任意画一个RtABC,使C90,A45,计算A的对边与斜边的比 ,你能得出什么结论?,A,B,C,综上可知,在一个RtABC中,C90,,一般地,当A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?,结论,问题,当A30时,A的对边与斜边的比都等于 ,是一个固定值;,当A45时,A的对边与斜边
3、的比都等于 ,也是一个固定值.,A,B,C,A,B,C,任意画RtABC和RtABC,使得CC 90,AA , 那么 与 有什么关系你能解释一下吗?,由于CC90, AA,所以RtABCRtABC,探究,这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比都是一个固定值,探究,如图,在RtABC中,C90,我们把锐角A的对边与斜边的比叫做A的正弦(sine),记作sinA, 即,例如,当A30时,我们有,当A45时,我们有,c,a,b,对边,斜边,注意,sinA是一个完整的符号,它表示A的正弦,记号里习惯省去角的符号“”; sinA没有单位,它表示一个比值,即直角三角形中A的对边与斜边的比; sinA不表示“sin”乘以“A”。,例1 如图,在RtABC中,C90,求sinA和sinB的值,A,B,C,3,4,(1),(2),试着完成图(2),2、在平面直角平面坐标系中,已知点A(3,0) 和B(0,-4),则sinOAB等于_.,3、在RtABC中,C=90,AD是BC边 上的中线,AC=2,BC=4,则sinDAC=_.,4、在RtABC中, C=90, , 则sinA=_.,1、如图,求sinA和sinB的值,5、如图,在ABC中, AB=CB=5,sinA= ,求ABC 的面积。,ABC面积12,