收藏 分享(赏)

模电实验答案.doc

上传人:fcgy86390 文档编号:4294123 上传时间:2018-12-21 格式:DOC 页数:27 大小:642KB
下载 相关 举报
模电实验答案.doc_第1页
第1页 / 共27页
模电实验答案.doc_第2页
第2页 / 共27页
模电实验答案.doc_第3页
第3页 / 共27页
模电实验答案.doc_第4页
第4页 / 共27页
模电实验答案.doc_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、实验一、常用电子仪器的使用一、实验目的1、学习电子技术实验中常用电子仪器的主要技术指标、性能和正确使用方法。2、初步掌握用示波器观察正弦信号波形和读取波形参数的方法。电路实验箱的结构、基本功能和使用方法。二、实验原理在模拟电子电路实验中,要对各种电子仪器进行综合使用,可按照信号流向,以接线简捷,调节顺手,观察与读数方便等原则进行合理布局。接线时应注意,为防止外界干扰,各仪器的公共接地端应连接在一起,称共地。1. 信号发生器 信号发生器可以根据需要输出正弦波、方波、三角波三种信号波形。输出信号电压频率可以通过频率分挡开关、频率粗调和细调旋钮进行调节。输出信号电压幅度可由输出幅度调节旋钮进行连续调

2、节。操作要领:1)按下电源开关。2)根据需要选定一个波形输出开关按下。3)根据所需频率,选择频率范围(选定一个频率分挡开关按下)、分别调节频率粗调和细调旋钮,在频率显示屏上显示所需频率即可。4)调节幅度调节旋钮,用交流毫伏表测出所需信号电压值。注意:信号发生器的输出端不允许短路。1. 交流毫伏表 交流毫伏表只能在其工作频率范围内,用来测量 300 伏以下正弦交流电压的有效值。操作要领:1. 为了防止过载损坏仪表,在开机前和测量前(即在输入端开路情况下)应先将量程开关置于较大量程处,待输入端接入电路开始测量时,再逐档减小量程到适当位置。 1. 读数:当量程开关旋到左边首位数为“1”的任一挡位时,

3、应读取 010 标度尺上的示数。当量程开关旋到左边首位数为“3”的任一挡位时,应读取 03 标度尺上的示数。3)仪表使用完后,先将量程开关置于较大量程位置后,才能拆线或关机。3双踪示波器示波器是用来观察和测量信号的波形及参数的设备。双踪示波器可以同时对两个输入信号进行观测和比较。操作要领:1. 时基线位置的调节 开机数秒钟后,适当调节垂直()和水平()位移旋钮,将时基线移至适当的位置。 1. 清晰度的调节 适当调节亮度和聚焦旋钮,使时基线越细越好(亮度不能太亮,一般能看清楚即可)。 1. 示波器的显示方式 示波器主要有单踪和双踪两种显示方式,属单踪显示的有“Y1”、“Y 2”、“Y 1+Y2”

4、,作单踪显示时,可选择“Y 1”或“Y 2”其中一个按钮按下。属双踪显示的有“交替”和“断续”,作双踪显示时,为了在一次扫描过程中同时显示两个波形,采用“交替”显示方式,当被观察信号频率很低时(几十赫兹以下),可采用“断续”显示方式。 1. 波形的稳定 为了显示稳定的波形,应注意示波器面板上控制按钮的位置:a )“扫描速率”(t/div)开关-根据被观察信号的周期而定(一般信号频率低时,开关应向左旋。反之向右旋)。b)“触发源选择”开关-选内触发。c)“内触发源选择”开关-应根据示波器的显示方式来定,当显示方式为单踪时,应选择相应通道(如使用 Y1通道应选择 Y1内触发源)的内触发源开关按下。

5、当显示方式为双踪时,可适当选择三个内触发源中的一个开关按下。d)“触发方式”开关-常置于“自动”位置。当波形稳定情况较差时,再置于“高频”或“常态”位置,此时必须要调节电平旋钮来稳定波形。5)在测量波形的幅值和周期时,应分别将 Y 轴灵敏度“微调”旋钮和扫描速率“微调”旋钮置于“校准”位置(顺时针旋到底)。三、实验设备1、信号发生器 2、双踪示波器 3、交流毫伏表 4、万用表四、实验内容1示波器内的校准信号用机内校准信号(方波:f=1KHz V PP=1V)对示波器进行自检。1. 输入并调出校准信号波形 校准信号输出端通过专用电缆与 Y1(或 Y2)输入通道接通,根据实验原理中有关示波器的描述

6、,正确设置和调节示波器各控制按钮、有关旋钮,将校准信号波形显示在荧光屏上。分别将触发方式开关置“高频”和“常态”位置,然后调节电平旋钮,使波形稳定。1. 校准“校准信号”幅度 将 Y 轴灵敏度“微调”旋钮置 “校准”位置(即顺时针旋到底),Y 轴灵敏度开关置适当位置,读取信号幅度,记入表 11 中。表 11标 准 值 实 测 值幅 度 0.5VPP 0.5VPP频 率 1KHz 1KHz3)校准“校准信号”频率将扫速“微调”旋钮置“校准”位置,扫速开关置适当位置,读取校准信号周期,记入表 11 中。1. 示波器和毫伏表测量信号参数 令信号发生器输出频率分别为 500Hz、1KHz、5KHz,1

7、0KHz,有效值均为 1V(交流毫伏表测量值)的正弦波信号。调节示波器扫速开关和 Y 轴灵敏度开关,测量信号源输出电压周期及峰峰值,计算信号频率及有效值,记入表 12 中。表 12示 波 器 测 量 值信号电压值信号频率值 周期(ms) 频率(Hz) 峰峰值(V PP) 有效值(V)1V 500Hz 0.54 500 0.55.8 1.031V 1KHz 0.25 1000 0.55.8 1.031V 5KHz 0.054 5000 0.55.8 1.031V 10KHz 0.025 10000 0.55.8 1.033交流电压、直流电压及电阻的测量1. 打开模拟电路实验箱的箱盖,熟悉实验箱的

8、结构、功能和使用方法。 1. 将万用表水平放置,使用前应检查指针是否在标尺的起点上,如果偏移了,可调节“机械调零”,使它回到标尺的起点上。测量时注意量程选择应尽可能接近于被测之量,但不能小于被测之量。测电阻时每换一次量程,必须要重新电气调零。 1. 用交流电压档测量实验箱上的交流电源电压 6V、10V 、14V;用直流电压档测量实验箱上的直流电源电压5V、12V;用电阻档测量实验箱上的10、1K、10K、100K 电阻器,将测量结果记入自拟表格中。 2.交流电压( V) 直流电压(V) 电阻()标称值 6 10 14 12 12 5 5 10 1K 10K实测值 测量仪表 万用表 万用表 V

9、万用表 档位(量程) 10V 50V 50V 10V 1 100 1K刻度线序号 4 2 2 3 1五、实验报告1. 画出各仪器的接线图。 答 : 各仪器的接线图如下:或1. 列表整理实验数据,并进行分析总结。 表 11 的实验数据与标准值完全相同,表 12 的实验数据中与示波器测得的有效值(1.03V)与毫伏表的数据( 1V)略有出入(相对误差 3%)。产生误差的原因可能是:(1)视觉误差(2)仪表误差3问答题:1)某实验需要一个 f=1KHz、u i=10mv 的正弦波信号,请写出操作步骤。答 : 操作步骤: 将信号发生器和交流毫伏表的黑夹子与黑夹子相接,红夹子与红夹子相接。在开机前先将交

10、流毫伏表量程开关置于较大量程处,待接通电源开关开始测量时,再逐档减小量程到适当位置。 按下信号发生器的正弦波形输出开关,选择频率范围 1K 开关按下,然后分别调节频率粗调和细调旋钮,在频率显示屏上显示 1KHz 即可。 调节幅度调节旋钮,用交流毫伏表测出所需信号电压值。交流毫伏表量程选择“30mV”档,读数从“03”标尺上读取。2)为了仪器设备的安全,在使用信号发生器和交流毫伏表时,应该注意什么?答 : 在使用信号发生器时,应该注意信号发生器的输出端不允许短路。 在使用交流毫伏表时,为了防止过载损坏仪表,在开机前和输入端开路情况下,应先将量程开关置于较大量程处,待输入端接入电路开始测量时,再逐

11、档减小量程到适当位置。3)要稳定不同输入通道的波形时,应如何设置内触发源选择开关?答 : 要稳定不同输入通道的波形时,可按下表设置内触发源选择开关?显示方式 单踪显示 双踪显示垂直方式开关 Y1 Y2 Y1+Y2 交替 断续内触发源开关选择 Y1 或 Y1 /Y2 Y2 或 Y1/ Y2 Y1或 Y2 Y1或 Y2面板上其余按钮在释放(弹出)位置4)一次实验中,有位同学用一台正常的示波器去观察一个电子电路的输出波形,当他把线路及电源都接通后,在示波器屏幕上没有波形显示,请问可能是什么原因,应该如何操作才能调出波形来?答 :可能原因 解决方法1、线路方面存在故障 排除故障2、示波器使用不当 亮度

12、太弱 顺时针调节辉度旋钮使亮度增加 位移旋钮位置不当 调节垂直()位移和水平()位移旋钮 Y 轴灵敏度位置不当 根据被测信号的幅度,适当调整 Y 轴灵敏度位置 扫描速率开关位置不当 根据被测信号的频率,适当调整扫描速率开关位置 耦合方式在接地位置 耦合方式选择 DC 显示方式与输入通道不符 重新设置 接线不当或接触不良 重新接线或使之接触良好实验二 晶体管共射极单管放大器一、实验目的1. 学会放大器静态工作点的调式方法和测量方法。 1. 掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影响。 1. 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理图 21 为电阻分压式工作点稳定

13、单管放大器实验电路图。偏置电阻RB1、 RB2组成分压电路,并在发射极中接有电阻 RE,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。三、实验设备1. 信号发生器 1. 双踪示波器 1. 交流毫伏表 1. 模拟电路实验箱 1. 万用表 四、实验内容1测量静态工作点实验电路如图 21 所示,它的静态工作点估算方法为:UB 图 21 共射极单管放大器实验电路图IEIc UCE = UCCI C(R CR E)实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。1. 没通电前,将放大器输

14、入端与地端短接,接好电源线(注意 12V 电源位置)。 1. 检查接线无误后,接通电源。 1. 用万用表的直流 10V 挡测量 UE = 2V 左右,如果偏差太大可调节静态工作点(电位器 RP)。然后测量 UB、U C,记入表 21 中。 表 21测 量 值 计 算 值UB(V) UE(V) UC(V) RB2(K ) UBE(V) UCE(V) IC(mA )2.6 2 7.2 60 0.6 5.2 21. 关掉电源,断开开关 S,用万用表的欧姆挡(11K)测量 RB2。将所有测量结果记入表 21 中。 1. 根据实验结果可用:I CI E或 IC UBEU BU EUCEU CU E计算出

15、放大器的静态工作点。 2测量电压放大倍数各仪器与放大器之间的连接图关掉电源,各电子仪器可按上图连接,为防止干扰,各仪器的公共端必须连在一起后接在公共接地端上。1)检查线路无误后,接通电源。从信号发生器输出一个频率为 1KHz、幅值为10mv(用毫伏表测量 ui)的正弦信号加入到放大器输入端。2)用示波器观察放大器输出电压的波形,在波形不失真的条件下用交流毫伏表测量下表中三种情况下的输出电压值,记入表中。表 22RC(K) RL(K) uo(V) AV24 1.5 15012 0.75 7524 24 0.75 753)用双踪示波器观察输入和输出波形的相位关系,并描绘它们的波形。*4测量输入电阻

16、和输出电阻根据定义:输入电阻 输出电阻 表 23Ri(K) RO(K)us(mv)ui(mv)测量值 计算值 uL(V)u0(V)测量值 计算值100 10 1.1 0.75 1.5 2.4 2.4置 RC=2.4K,R L=2.4K,I C=2.0mA,输入 f=1KHz,u i=10mV 的正弦信号,在输出电压波形不是真的情况下,用交流毫伏表测出 uS、u i和 uL记入表 23 中。断开负载电阻 RL,保持 uS不变,测量输出电压 u0,记入表 23 中。五、实验报告1. 列表整理实验结果,把实测的静态工作点与理论值进行比较、分析。 答 :静态工作点UBE(V)UCE(V)IC(mA)实

17、测值0.6 5.2 2理论值0.7 5.2 2实测的静态工作点与理论值基本一致, 实测 UBEU BU E0.6V,而理论为 0.7V,产生误差的原因可能是 UB、U E的值接近,这种接近的两个量相减的间接测量,则合成相对误差就比较大了。2分析静态工作点对放大器性能的影响。答 : 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时 u。的负半周将被削底;如工作点偏低则易产生截止,即 u。的正半周被缩顶(一般截止失真不如饱和失真明显) 。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态测试,即在放大器的输入端加

18、入一定的 ui,以检查输出电压 u。的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。3怎样测量 RB2阻值?答 : 测量在线电阻时,要确认被测电路没有并联支路并且被测电路所有电源已关断及所有电容已完全放电时,才可进行;因此本实验测量 RB2时要将开关 K 断开。测量前先将开关转到电阻 X1K 档,然后把红、黑表笔短路,调整 “0” 调整器,使指针指在 0 位置上(万用表测量电阻时不同倍率档的零点不同,每换一档都应重新进行一次调零。),再把红、黑表笔分开去测被测电阻的两端,即可测出被测电阻 RB2的阻值。4总结放大器的参数对电压放大倍数的影响及输入输出波形的相位如何。答 : 由 表

19、 22 的实验结果可知:在静态工作点相同情况下 RL 越大,A V 越大;R L 越小,A V 越小; RC 越大, AV 越大;R C 越小,A V 越小; AV 与 RL/RC 成正比。实验满足公式。 输入 ui 与 输出 uo 的波形相位相反。实 验 五 组 合 逻 辑 电 路 的 设 计一 、 实 验 目 的学习组合逻辑电路的设计与测试方法。二 、 实 验 用 仪 器 、 仪 表数字电路实验箱、万用表、74LS00三 、 设 计 任 务设计一个四人无弃权表决电路(多数赞成则提案通过),本设计要求采用 4-2 输入与非门实现。设计步骤:(1)根据题意列出真值表如表 1 所示,再填入卡诺表

20、 2 中。表 1D 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1C 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1B 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1A 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1Z 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1表 2DCBA 00 01 11 1000 01 1 11 1 1 110 1 (2)由卡诺图得出逻辑表达式,并演化成“与非”的形式 Z ABCBCD ACDABD(8 个与非门)AB (CD)CD (AB ) 或 BD(A C )AC (B D)AB

21、(BCAD)CD(BCAD) 或 BD(AD BC)AC (BCAD)(BC AD)(ABCD) 或(BCAD)(ACBD) 或 ZABC BCD ACDABD(8 个与非门)AB (C D)CD (AB ) AB(ACBD)CD (ACBD)(AC BD )(AB CD ) Z ABCBCD ACDABD(8 个与非门)A(BC BD)C( ADBD)或A(BCCD) B(CDAD)或A(BCCD) D(AC AD)或B(AC AD)D(ACBC) Z ABCBCD ACDABD(13 个与非门)AB (CD)CD (AB ) 实 验 六 用中规模组合逻辑器件设计组合逻辑电路一 、 实 验

22、目 的1学习中规模集成数据选择器的逻辑功能和使用方法。2学习使用中规模集成芯片实现多功能组合逻辑电路的方法。二 、 设 计 任 务用数据选择器 74LS151 或 3/8 线译码器设计一个多功能组合逻辑电路。该电路具有两个控制端 C1C0,控制着电路的功能,当 C1C000 时,电路实现对输入的两个信号的或的功能;当C1C001 时,电路实现对输入的两个信号的与的功能;当 C1C010 时,电路实现对输入的两个信号的异或的功能;当 C1C011 时,电路实现对输入的两个信号的同或的功能。三 、 设 计 过 程(1)根据题意列出真值表如下所示,再填入卡诺图中。C1 0 0 1 1C0 0 1 0

23、 1A 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1B 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1Y 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1(2)、建立 Y(C 1、C 0、A、B)的卡诺图及降维图,如图所示。ABC1C000 01 11 1000 0 1 1 101 0 0 1 0 11 1 0 1 0 10 0 1 0 1 AC1C00 100 B0 1101 02 B311 6 B710 B4 5F 函数降维图(图中变量 C1C0A 换成 C1C0B 结果不变)(3)、减少 Y 函数的输入变量,将 4 变量减为 3 变量,通过

24、降维来实现。如上图所示。这时,数据选择器的输入端 D0 D7分别为:D0=B, D1=1, D2 =0, D3 =B, D4 =B, D5 =, D6 =, D7 =B (4)、F 函数逻辑图如下图所示四 、 实 验 用 仪 器 、 仪 表数字电路实验箱、万用表、74LS151、74LS00。五 、 实 验 步 骤1. 检查导线及器件好坏。 1. 按上图连接电路。C 1、C 0、A 、B 分别接逻辑开关,检查无误后接通电源。 1. 按真值表逐项进行测试并检查是否正确,如有故障设法排除。 1. 结果无误后记录数据后拆线并整理实验设备。 实验数据如下:C1 0 0 1 1C0 0 1 0 1A 0

25、 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1B 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1Y 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1实验证明,实验数据与设计值完全一致。设计正确。六 、 设计和实验过程的收获与体会。1、设计过程的收获与体会: 设计前要将真值表列出。 用低维数据选择器实现高维逻辑函数时,首先要降维,将多出的变量作为记图变量。当需要降维处理时,将谁作为记图变量是任意的,但结果是不同的。因此要进行降维时,要确定哪几个变量作为数据选择器的地址输入变量。 可用 Electronics Workbench 进行仿真。以验证设计正确

26、与否。2、实验过程的收获与体会: 74LS151 的第七脚必须接低电平; 出现故障时,首先检查地址输入端的电平,看其状态是否与相接的逻辑电平开关相同。如不相符,则可能存在断路现象。如相同,则检查其输出是否与相应数据端输入相同,如相同,可能存在设计错误,如不同,则可能器件已损坏。 实 验 逻 辑 电 路 图 最 好 把 集 成 块 的 引 脚 标 上 , 以 便 接 线 和 检 查。1. 用数据选择器 74LS151 或 3/8 线译码器设计一个多功能组合逻辑电路。该电路具有两个控制端 C1C0,控制着电路的功能,当 C1C000 时,电路实现对输入的两个信号的或的功能;当 C1C001 时,电

27、路实现对输入的两个信号的与的功能;当 C1C010 时,电路实现对输入的两个信号的异或的功能;当 C1C011 时,电路实现对输入的两个信号的同或的功能。设 A2=C1 A1=C0 A0=A 用 138器 件 :Y= (A+B)+C0 (AB)+ C1(AB)+ C1C0 (AB)设 D=C1 C=C0 B=A A=A( C1=(1)=(1) = S1 (2)(实验用 74LS138 一块、74LS20 一块、74LS00 一块)1. 用 38 译码器 74LS138 设计一个三位二进制码与循环码的可逆转换电路。K 为控制变量。 (1)根据题意列出真值表如下所示:输入 输出KA2 A1 A0

28、Q2 Q1 Q00 0 0 0 0 00 0 1 0 0 10 1 0 0 1 10 1 1 0 1 01 0 0 1 1 01 0 1 1 1 11 1 0 1 0 101 1 1 1 0 00 0 0 0 0 00 0 1 0 0 10 1 1 0 1 00 1 0 0 1 11 1 0 1 0 01 1 1 1 0 11 0 1 1 1 011 0 0 1 1 1(实验用 74LS138 一块、 74LS20 二块、74LS00 一块 共四块) 或(实验用 74LS138 一块、74LS20 一块、74LS00 二块 共四块)1. 用 38 译码器 74LS138 设计一个二进制全加/全

29、减两用电路。K 为控制变量。 (1)根据题意列出真值表如下所示:K A B Cn1 Sn Cn0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 101 1 1 1 10 0 0 0 00 0 1 1 10 1 0 1 10 1 1 0 11 0 0 1 01 0 1 0 01 1 0 0 011 1 1 1 1Sn (m1 + m2 + m4 + m7 )+K(m1 + m2 + m4 + m7 ) = m1 + m2 + m4 + m7=Cn (m3 + m5 + m6 + m7 )+ K(m1 + m2 + m3 +

30、 m7 ) ( m3 + m7)+ ( m5 + m6)+ K(m1 + m2 ) ( m3 + m7)+ + K=(实验用 74LS138 一块、74LS20 一块、74LS00 二块 共四块)实 验 七 设 计 一 个 四 位 可 逆 二 进 制 计 数 器一 、 实 验 目 的掌握中规模集成计数器的使用方法及功能测试方法。二 、 实 验 内 容 及 要 求用 D 触发器设计一个异步四位二进制可逆计数器。三 、 设 计 过 程( 1) 根 据 题 意 列 出 加 计 数 状 态 表 和 驱 动 表 , 如 下 表 所 示 。现 态 次 态 驱 动 信 号序号 Qn3 Qn2 Qn1 Qn0

31、 Qn+13 Q n+12 Q n+11 Q n+10 D3 CP3 D2 CP2 D1 CP1 D0 CP01 0 0 0 0 0 0 0 1 0 0 0 1 12 0 0 0 1 0 0 1 0 0 0 1 1 0 13 0 0 1 0 0 0 1 1 0 0 0 1 14 0 0 1 1 0 1 0 0 0 1 1 0 1 0 15 0 1 0 0 0 1 0 1 0 0 0 1 16 0 1 0 1 0 1 1 0 0 0 1 1 0 17 0 1 1 0 0 1 1 1 0 0 0 1 18 0 1 1 1 1 0 0 0 1 1 0 1 0 1 0 19 1 0 0 0 1 0 0

32、 1 0 0 0 1 110 1 0 0 1 1 0 1 0 0 0 1 1 0 111 1 0 1 0 1 0 1 1 0 0 0 1 112 1 0 1 1 1 1 0 0 0 1 1 0 1 0 113 1 1 0 0 1 1 0 1 0 0 0 1 114 1 1 0 1 1 1 1 0 0 0 1 1 0 115 1 1 1 0 1 1 1 1 0 0 0 1 116 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 1( 2) 用 卡 诺 图 化 简 , 如 下 图 所 示 。 求 得 各 位 触 器 的 驱 动 信 号 的 表 达 式Q1 Q0Q3 Q2 00 01 1

33、1 1000 01 1 11 0 10 Q1 Q0Q3 Q2 00 01 11 1000 1 01 0 11 0 10 1 Q1 Q0Q3 Q2 00 01 11 1000 1 0 01 1 0 11 1 0 10 1 0 Q1 Q0Q3 Q2 00 01 11 1000 1 0 0 101 1 0 0 111 1 0 0 110 1 0 0 1( 2) 用 卡 诺 图 化 简 , 如 下 图 所 示 。 求 得 各 位 触 器 的 时 钟 方 程 的 表 达 式Q1 Q0Q3 Q2 00 01 11 1000 01 1 11 0 10 Q1 Q0Q3 Q2 00 01 11 1000 1 0

34、1 0 11 0 10 1 Q1 Q0Q3 Q2 00 01 11 1000 1 0 01 1 0 11 1 0 10 1 0 ( 3) 根 据 题 意 列 出 减 计 数 状 态 表 和 驱 动 表 , 如 下 表 所 示 。现 态 次 态 驱 动 信 号序 号 Qn3 Qn2 Qn1 Qn0 Qn+13 Q n+12 Q n+11 Q n+10 D3 CP3 D2 CP2 D1 CP1 D0 CP01 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 12 0 0 0 1 1 1 1 0 0 0 0 0 13 0 0 1 0 1 1 0 1 0 0 0 1 1 14 0 0 1

35、1 1 1 0 0 0 0 0 0 15 0 1 0 0 1 0 1 1 0 0 1 1 1 1 16 0 1 0 1 1 0 1 0 0 0 0 0 17 0 1 1 0 1 0 0 1 0 0 1 1 18 0 1 1 1 1 0 0 0 0 0 0 0 19 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 110 1 0 0 1 0 1 1 0 0 0 0 0 111 1 0 1 0 0 1 0 1 0 0 0 1 1 112 1 0 1 1 0 1 0 0 0 0 0 0 113 1 1 0 0 0 0 1 1 0 0 1 1 1 1 114 1 1 0 1 0 0 1 0

36、 0 0 0 0 115 1 1 1 0 0 0 0 1 0 0 0 1 1 116 1 1 1 1 0 0 0 0 0 0 0 0 1( 2) 用 卡 诺 图 化 简 , 如 下 图 所 示 。 求 得 各 位 触 器 的 驱 动 信 号 的 表 达 式Q1 Q0Q3 Q2 00 01 11 1000 1 01 11 10 0 Q1 Q0Q3 Q2 00 01 11 1000 01 11 10 Q1 Q0Q3 Q2 00 01 11 1000 01 11 10 Q1 Q0Q3 Q2 00 01 11 1000 1 0 0 101 1 0 0 111 1 0 0 110 1 0 0 1( 2)

37、 用 卡 诺 图 化 简 , 如 下 图 所 示 。 求 得 各 位 触 器 的 时 钟 方 程 的 表 达 式Q1 Q0Q3 Q2 00 01 11 1000 01 1 11 0 10 Q1 Q0Q3 Q2 00 01 11 1000 1 01 0 11 0 10 1 Q1 Q0Q3 Q2 00 01 11 1000 1 0 01 1 0 11 1 0 10 1 0 由 上 分 析 可 知 : 加 减 计 数 只 在 于 时 钟CP的 不 同 , 若 要 使 一 个 电 路 能 够 可 逆 计 数 , 增 设一 控 制 开 关 , 就 可 实 现 。 设K 1时 为 加 计 数 , 设 K

38、0时 为 减 计 数 , 加 法 : CPn 减 法 : CPn 则 有 : CPn (或 如 K=0时 为 加 法 : CPn K=1时 为 减 法 : CPn 则 有 : CPn=)四 、 可 逆 计 数 器 逻 辑 图 如 下 :四 、 实 验 用 仪 器 、 仪 表数字电路实验箱、万用表、7 4LS74、 CC4030五 、 实 验 步 骤六 、 实 验 数 据K=0 K=1CP Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q00 0 0 0 0 0 0 0 01 0 0 0 1 1 1 1 12 0 0 1 0 1 1 1 03 0 0 1 1 1 1 0 14 0 1 0 0 1 1

39、 0 05 0 1 0 1 1 0 1 16 0 1 1 0 1 0 1 07 0 1 1 1 1 0 0 18 1 0 0 0 1 0 0 09 1 0 0 1 0 1 1 110 1 0 1 0 0 1 1 011 1 0 1 1 0 1 0 112 1 1 0 0 0 1 0 013 1 1 0 1 0 0 1 114 1 1 1 0 0 0 1 015 1 1 1 1 0 0 0 116 0 0 0 0 0 0 0 0实 验 八 设 计 任 意 进 制 计 数 器一 、 实 验 目 的掌握中规模集成计数器的使用方法及功能测试方法。二 、 实 验 内 容 及 要 求采用(74LS192)

40、复位法或预置数法设计一个三位十进制计数器。要求各位同学设计的计数器的计数容量是自己学号的最后三位数字。三 、 设 计 过 程74LS192 是中规模同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列如图所示。74LS192(CC40192)的功能如下表所示。74LS192 引脚排列图CR:清除端 CP u:加计数端:置数端 CP D:减计数端 :非同步进位输出端:非同步借位输出端 D3、D 2、D 1、D 0:数据输入端 Q3、Q 2、Q 1、Q 0:输出端表 74LS192(CC40192)的功能输 入 端 输 出 端CR CPu CPD D3 D2 D1 D0 Q3

41、Q2 Q1 Q0功 能1 0 0 0 0 清零0 0 d c b a d c b a 置数0 1 1 00001001 加 计 数 1001 时=00 1 1 10010000 减 计 数 0000 时=0用 M 进制集成计数器可以构成 N(任意)进制的计数器。通常用反馈清零法和反馈置数法。当计数器的计数 NM 时,则要用多片 M 进制计数器构成。其计数规律为:当低位计数器没有达到计数的最大值时,如 74LS192 的 1001时,其高位芯片应处于保持状态,只有当低位芯片计数达到最大值时,给相邻的高位芯片计数器发一个信号,使其脱离保持状态,进入计数状态。现以 233为例为计数容量进行设计。由于

42、 233 为三位数,因此需用三块 74LS192。1、清零法:CR(R D)(Q 1Q0)百(Q 1Q0 )拾(Q 1)个初态:0000终态:2331232 即:0010 0011 0010状态转换图:(略)2、置数法:由于 74LS192 是具有异步清零、置数功能的十进制计数器,因此保留哪 233 种状态,方法有多种。下图是其中两种置数法。犹以最后一种使用器件最少,接线最为简单。方案一:方案三:(Q1Q0)百(Q1Q0 )拾(Q2Q0)个 (或)初态:0000 (或 1000332668)终态:3321331 即:0011 0011 0001 (或 999)四 、 实 验 用 仪 器 、 仪

43、 表数字电路实验箱、万用表、74LS192、74LS00、74LS20、74LS08 等五 、 实 验 步 骤 清零法:1. 检查导线及器件好坏(即加上电源后,按 74LS192 的功能表进行检测)。 1. 按上图连接电路。、CP D分别接逻辑开关并置为高电平,百位(74LS192 (3)、拾位、个位的 Q3、Q 2、Q 1、Q 0分别接发光二极管或数码管,计数脉冲接手动或 1Hz 时钟脉冲。检查无误后接通电源。 1. 加入 CP 进行测试并检查结果是否正确,如有故障设法排除。 1. 结果无误后记录数据后拆线并整理实验设备。 实验数据如下:百 位 拾 位 个 位CP Q3 Q2 Q1 Q0 Q

44、3 Q2 Q1 Q0 Q3 Q2 Q1 Q01 0 0 0 0 0 0 0 0 0 0 0 02 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 1 04 0 0 0 0 0 0 0 0 0 0 1 15 0 0 0 0 0 0 0 0 0 1 0 0331 0 0 1 1 0 0 1 1 0 0 0 0334 0 0 0 0 0 0 0 0 0 0 0 0实验证明,实验数据与设计值完全一致。设计正确。 置数法:1. 检查导线及器件好坏(即加上电源后,按 74LS192 的功能表进行检测)。 1. 按上图连接电路。CR、CP D分别接逻辑开关并置为高电

45、平,百位(74LS192 (3)、拾位、个位的 Q3、Q 2、Q 1、Q 0分别接发光二极管或数码管,计数脉冲接手动或 1Hz 时钟脉冲。检查无误后接通电源。 1. 加入 CP 测试并检查结果是否正确,如有故障设法排除。 1. 结果无误后记录数据后拆线并整理实验设备。 实验数据如下:百 位 拾 位 个 位CP Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q01 0 0 0 0 0 0 0 0 0 0 0 02 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 1 04 0 0 0 0 0 0 0 0 0 0 1 15 0 0 0 0

46、 0 0 0 0 0 1 0 0331 0 0 1 1 0 0 1 1 0 0 0 0334 0 0 0 0 0 0 0 0 0 0 0 0实验证明,实验数据与设计值完全一致。设计正确。六 、 设计和实验过程的收获与体会。1、设计过程的收获与体会: 设计前要确定是用清零法还是置数法。 要将状态表列出。特别是置数法,要保留哪几种状态方法有多种。 可用 Electronics Workbench 进行仿真。以验证设计正确与否。2、实验过程的收获与体会: CC40192 的 CR、CP D端不能悬空; 出现故障时,首先检查电源,然后检查 CP,CR、CP D端的电平状态。如不相符,则可能存在断路现象

47、。如相同,可能存在设计错误,或者可能器件已损坏。 实验逻辑电路图最好把集成块的引脚标上,以便接线和检查。实 验 九 设 计 一 个 串 行 累 加 器一 、 实 验 目 的1学习中规模双向移位寄存器逻辑功能集成电路的使用方法。2熟悉移位寄存器的应用一一构成串行累加器和环形计数器。二 、 实 验 内 容 及 要 求用移位寄存器设计一个串行累加器。要求将已分别存于四位移位寄存器 Ra和 Rb中的两个二进制数 A、B 按位相加,其和存于移位寄存器 Rs中。三 、 设 计 过 程累加器是由移位寄存器和全加器组成的一种求和电路,它的功能是将本身寄存的数和另一个输入的数相加,并存在累加器中。串行累加器结构框图如图 2 所示。设开始时,被加数和加数已分别存入累加寄存器和加数寄存器。进位触发器 D 已被清零。在第一个脉冲到来之前,全加器各输入、输出端的情况为:AnA 0,B nB 0, C n-

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 中学实验

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报