1、104第 5 章 圆管流动一.学习目的和任务1.本章学习目的(1)掌握流体流动的两种状态与雷诺数之间的关系;(2)切实掌握计算阻力损失的知识,为管路计算打基础 。2.本章学习任务了解雷诺实验过程及层流、紊流的流 态特点,熟 练掌握流态 判别标准;掌握圆管层流基本规律,了解紊流的机理和脉 动、 时均化以及混合长度理 论;了解尼古拉兹实验和莫迪图的使用,掌握阻力系数的确定方法;理解流动阻力的两种形式,掌握管路沿程损失和局部损失的计算;了解边界层概念、 边界层分离和绕流阻力。二.重点、难点重点:雷诺数及流态判别,圆管 层流运动规律,沿程阻力系数的确定,沿程 损失和局部损失计算。难点:紊流流速分布和紊
2、流阻力分析。由于实际流体存在黏性,流体在圆管中流动会受到阻力的作用,从而引起流体能量的损失。本章将主要讨论实际流体在圆管内流动的情况和能量损失的计算。5.1 雷诺(Osborne Reynolds)实验和流态判据5.1.1 雷诺实验1883 年,英国科学家雷诺通过实验发现,流体在流动时存在两种不同的状态,对应的流体微团运动呈现完全不同的规律。这就是著名的雷诺实验,它是流体力学中最重要实验之一。图 51 雷诺(Osborne Reynolds)实验 图 52 雷诺实验结果105如图 51 所示为雷诺实验的装置。其中的阀门 T1 保持水箱 A 内的水位不变,使流动处在恒定流状态;水管 B 上相距为
3、 处分别装有一根测压管,用来测量两处的沿程损l失 ,管末端装有一个调节流量的阀门 T3,容器 C 用来计量流量;容器 D 盛有颜色液fh体,T2 控制其流量。进行实验时,先微开阀门 T3,使水管中保持小速度稳定水流,然后打开颜色液体阀门 T2 放出连续的细流,可以观察到水管内颜色液体成一条直的流线,如图 52(a)所示;从这一现象可以看出,在管中流速较小时,它与水流不相混和,管中的液体质点均保持直线运动,水流层与层间互不干扰,这种流动称为层流(Laminar flow) 。比如,实际中黏性较大的液体在极缓慢流动时,属层流运动。随后,逐渐开大阀门 T3,增大管中液体流速,流速达到一定速度时,管内
4、颜色液体开始抖动,具有波形轮廓,如图 52(b)所示。继续增大流速,颜色液体抖动加剧,并在某个流速 (上临界流速)时,颜色液体线完全消失,颜色液体溶入水流中,如图/cu52(c)所示;这种现象是液体质点的运动轨迹不规则,各层液体相互剧烈混和,产生随机的脉动,这种流动称为湍流(Turbulent flow)或紊流 。上述实验是液体流速由小到大的情况,流速由大到小的实验过程是首先全开阀门T3,让水流在水管 B 中高速流动,形成湍流状态,然后适当打开颜色液体阀门 T2,使颜色液体溶入水流中;然后缓慢关小阀门 T3,使液体流速逐渐降低,当流速减到某一值(下临界流速)时,流动形态就由湍流变成层流。这两次
5、实验所不同的是,由层流转cu变成湍流时的流速 要小于由湍流转变成层流的流速 。/cucu实验表明,流体流动具有两种形态,并且可以相互转变。5.1.2 流态判据上述实验告诉我们流体流动有层流和湍流两种流态,以及流态与管道流速间的关系,可以用临界流速来判别。通过对雷诺实验的数据测定和进一步分析,流态不但与断面平均流速 有关,而且与管径 、液体密度 以及其黏性 有关。归结为一个无因数vd106雷诺数(Reynolds number)作为判别流动状态的准则。雷诺数 Re 为(5.1-1)Reud式中 流体密度,kg/m 3;管内平均流速,m/s;u动力黏度,Pa.s;运动黏度,m 2/s;圆管直径,对
6、于非圆管为水力直径,m 。d水力直径 可表示为(5.1-2)Ad4式中 过流断面面积。A过流断面上流体与壁面接触的周界,称为湿周长度。雷诺实验及其他大量的实验表明,与下临界流速对应的雷诺数几乎不变,约为(称为下临界雷诺数) ,而与上临界流速对应的雷诺数随实验条件不同在Re230c232013800 的范围内变化。对于工程实际来说可取下临界雷诺数为判别,即:时为层流; 时为湍流。cRec由上述可知,流态不仅反映了管道内液体的特性,同时还反映了管道的特性。雷诺数是判别流态的标准。5.2 圆管中的层流运动圆管中的层流运动常见于工程实际中,在机械工程上尤其常用,如液压传动、润滑油管、滑动轴承中油膜的流
7、动等。研究圆管层流具有非常重要的意义。1075.2.1 建立圆管中层流运动微分方程的方法第一种方法是基于纳维斯托克斯方程(N S )方程的简化分析,第二种方法是基于微元流体的牛顿力学分析法。前者只要根据层流特点简化即可,为应用 NS 方程以后解决湍流等问题奠定基础;后者简明扼要,物理概念明确。第一种分析方法将在下一节中讲述,下面介绍第二种方法。5.2.1.1 牛顿力学分析法管内流动的沿程损失是由管壁摩擦及流体内摩擦造成的。首先建立关于水平圆管内流动的摩擦阻力与沿程损失间的关系;如图 5-3 所示,取长为 ,半径为 r 的微元圆柱dx体,不计质量力和惯性力,仅考虑压力和剪应力,则有 02)(2d
8、xpr得 r由于 21pdxL根据牛顿黏性定律 ,再考虑dru到 ,则有Lpdx(5.2-1)rLpdru25.2.1.2 速度分布规律与流量对式(5.2-1) 作不定积分,得(5.2-2)crLpu24边界条件 时, ; 时, 。Rr0rmax图 5-3 圆管层流(二)108则可定积分常数 并代入上式,得24RLpc和 (5.2-3)(2ru2max4RpuL式(5.2-3) 表明,圆管层流的速度分布是以管轴线为轴线的二次抛物面,如图 5-4 所示。um a xu0Rd r在半径 r 处取壁厚为 的微圆环,在 上可视速度 u 为常数,圆环截面上的微流drdr量 为:dq(5.2-5)22()
9、4pquArRrdL积分上式,可求圆管流量(5.2-6)4200()4128RpdqdRrpLL式(5.2-16)称哈根伯肃叶定律(Hagen-Poiseuille law) ,它与精密实测结果完全一致。5.2.1.3 最大流速与平均流速由式(5.2-3) 知(5.2-7)2max4RpuL由式(5.2-6) 可求平均流速 u图 5-4 圆管层流的速度和剪应力分布109(5.2-8)22max138qpduRuAL5.2.1.4 剪应力分布规律由式(5.2-3) 并根据牛顿内摩擦定律可求剪应力 (5.2-9)rLpRLpdru2)(42 由上式知,剪应力 服从线性分布,如图 5-4 所示,并且
10、 时管壁上的剪应力R即最大值 ,即max(5.2-10)duRLp82max05.2.1.5 压力损失 或 h由式(5.2-6) 可求流体在圆管流经 L 距离后的压降 p(5.2-11)421283qupd压力损失 也可用液柱高度形式表示p(5.2-12)ugdLgudLphL 2223Re64式(5.2-12)为圆管层流时的损失计算公式,称达西公式(Darcy equation) ,式中 称沿程阻力系数,对于水 ,对于油液 。Re64 80755.2.1.6 功率损失 LN(5.2-13)242241818LqdpupLd【例 5-1】 在长度 m,直径 mm 的管路中输送密度为 0.95k
11、g/m 的0l303重油,其重量流量 kN/h,求油温分别为 10C(运动黏度为 25cm /s)6.2371G2和 40C (运动黏度为 cm2/s)时的水头损失。5110【解】 体积流量m /s2371.60.780.958Gqg3平均速度1m/s2.34vA10C 时的雷诺数 10Re105d40C 时的雷诺数 232v该流动属层流,故可以应用达西公式计算沿程水头损失。m 油柱高703.98.23.01642Re64211 gvdlgvdlhf同理,可计算 40C 时的沿程水头损失m 油柱高421.58.923.0642fh5.3 椭圆管层流在上一节中,已经分析了圆管中层流的情况。由于医
12、疗设备等技术的发展,非圆管特别是椭圆管也被应该在流体输送管道中。这一节将分析较少见的椭圆管层流的问题。5.3.1 椭圆管流体运动微分方程由数学知识可知,如图 55 所示,椭圆形方程为( ) (5.3-1)21xzab,axbz前面已经提到分析管中层流有两种方法,这里运用基于纳维斯托克斯方程(NS)方程的简化分析。111参看图 5-5,取 0-xyz 坐标系, y 轴与椭圆管轴线重合。层流仅有 y 向的运动,没有x 和 z 向运动,即 , ;另外,在层流状态下,流态稳定,故惯性力和0xzuu质量力可不计,即 和 。则一维层流状态条件下,dtdtzy 0xyzff根据如上设定,直角坐标系中的 NS
13、 方程可简化为:(5.3-2)221()0xxxuupvyzypz上式(5.3 -2)知,p 与 x, z 无关,仅为 y 的函数,则 ;又由不可压缩流体在pdy稳态流条件下的连续方程为 ,因 ,则有 ,0zuyx0xzu0yu,另外,流体为一维流动, ,则上式简化为20yuy(5.3-3)21puxz上式即为椭圆管内流体运动方程。5.3.2 管内流速分布由于 与 无关,所以可以视 (C 为常数) ,则式(5.3-3)可表示(,)uxzy1dpy图 55 椭圆形管道112为(5.3-4)2uCxz可写为(其中 ) (5.3-5)212xuCz1对上式(5.3-5)积分,得(5.3-6)12()
14、yzxuCz由上一节分析可知,根据边界条件有: ,代入0,0,uxzxz上式(5.3-5) ,得 。22()0Czy代入积分常数并积分式(5.3 -5) ,得(5.3-7)213()Cuyz上式中,可设 ,可得221133(),()Czy(5.3 -8)21Cuyz由数学知识可知,式(5.3-3)的解一般形式为(5.3-9)2110式中 为常数。0C注意到上式中, 和由边界条件有: 时,1dpCy,0xaz113; 时, 。代入上式定出积分常数,得0u,0zbxu222110,()dpadpbabdpCCCybyay将上述常数代入式(5.3-9) ,得(5.3-10)22(1)xzudyb式中
15、 表示压强 在 轴上的变化量,即 (负号代表递减) 。dpyy21pL则式(5.3-10)可写成(5.3-10)22(1)()abxzub上式就是椭圆管层流速度计算公式,速度分布如图 56 所示。上图可以看出,平行 轴的任意截面内速度服从抛物线分布,两个面的速度分布构x成椭圆球抛物面。且最大速度(5.3-11)2max(0,)()pabuL1 流量和压降取微元面积 ,则流过 的流量为dA( ) (5.3-12)22(1)()pabxzqudxLbAzdx图 56 椭圆管层流速度分布面内速度分布 面内速度分布()ayz()xy114定积分上式,得(5.3-13)2232(1)()4()bapxz
16、pabqdxLbaL则有(5.3-14)234()qp平均速度可求为(5.3-15)24()abuAL与式(5.4-11)比较得, 。max2上述就是应用了 N-S 方程对椭圆管层流进行的分析。很显然,当 时,就abR是圆管层流的情况,所以圆管可作为椭圆管的特殊情况。分析其它异形管也可以同样分析。5.4 圆管中流体的湍流运动自然界以及工程中的流动大多数为湍流,实际流体在管内流动的大部分也是这种情况。因此,研究湍流流动具有更实际的意义。5.4.1 研究湍流的方法时均法流体作湍流运动时,流体微团在任意时刻都是作无规则运动,质点的运动轨迹曲折无序。这就给研究湍流的规律带来了极大的困难。为此,要运用到
17、湍流分析中的时均法来研究。因为它们的平均值有一定的规则可循,所以可将湍流各物理量的瞬时值看成由时均值和脉动值两部分构成,如将瞬时流速表示为湍流瞬时流速时均流速脉动流速如图 57 所示, 时均流速 u(5.4-1) Tdt01图 57 湍流真实流速OtKdtTuxxLMN115在时间间隔 T 内,尽管 u 随时间变化,但时均流速 不随时间变化,它只是空间点的函u数。瞬时流速 u 与时均流速 的差值称脉动流速 ,即 (5.4-2)脉动流速 的均值 为(5.4-3)0)()(1000 udtutTdtuT同样,也可引出其他物理量时均值,如时均压强为(5.4-4)01tip则其瞬时压强为(5.4-5)
18、i式中 为瞬时压强, 为脉动压强。ipp5.4.2 湍流流动中的黏性地层光滑管概念在湍流运动中,整个流场并不全是湍流。由于流体具有黏性,流体黏附于壁面,流速为零;离开壁面的流体,速度也不可能突然增加,靠近壁面的流体仍比较安定,即在壁面附近存在一层呈层流状态的薄层,称层流边层(Leminar boundary layer) 。层流边界外的流体,流速逐渐变大,但还没有达到杂乱无章的程度,这一薄层称过渡层(Buffer region)。过渡层之外的流体处于杂乱无章的流动状态,才是湍流层,称湍流核心区(Turbulenx region)。 层流边层的厚度很薄。在层流区,雷诺数 ;过渡区也很薄,雷诺数2
19、30eR;工程上,雷诺数处于该区域内的情况并不多,人们对它的研究甚少,4023eR一般按湍流处理。实验研究表明,层流边层厚度 与主流的湍流程度有关。湍流程度愈剧烈,层流边层 愈薄,则计算式为116yy xuuy()y(5.4-6))(30eRd式中 摩擦阻力系数, 为圆管直径(或水力直径) 。的影响因素复杂,与管径 、管中流速 和管壁的光滑程度有关,这就引出u光滑管和粗糙管的概念。管壁面凹凸不平的绝对尺寸的均值 称绝对粗糙度(Absolute roughness)。当时,管壁的凹凸部分完全淹没在层流中,流体的湍流核(区)不直接与管壁接触,对液体湍流无影响。由于层流边层的存在, 对层流阻力有一定
20、影响,这种管称水力(流动)光滑管(Hydrodynamically smooth pipe)。当 时,管壁粗糙(凹凸)部分突出到湍流中,层流边层被破坏,这时流体的阻力主要决定于管的粗糙度 ,而与雷诺数 或黏度 无关,这时的管道称水力(流动)粗糙管(Hydrodynamically eRroughness)。管壁的几何粗糙度 并不能完全描述管壁对液体的影响。同一管道,可为水力光滑管,也可为水力粗糙管,主要决定于层流边层厚度 或雷诺数 。eR5.4.3 剪应力如图 58 图所示,湍流的剪应力 由两部分组成。其一为因时均流层相对运动而产生的黏性剪应力,由牛顿内摩擦定律,得(5.4-6)1duy式中
21、为时均流速梯度。另一个为上下层质点相互掺混,动量交换引起的附加剪应力,由称为雷诺应力(5.4-7)2xyu式中 为涨落流速乘积的时均值,因 、 异号,为了使它们表示相同的方向,所xyu以前面加个负号。湍流剪应力为图 59 湍流剪应力图 5-8 湍流的剪应力117yx()ulll yl (5.4-8)12xydu当雷诺数较小时,湍流运动不是很激烈, 占主导作用;随着雷诺数的增大、湍流1涨落剧烈, 会不断增大,即当雷诺数很大,湍流运动很剧烈时, ,从而前者2 12可忽略不计。 5.4.4 普朗特混和长度理论如前述,湍流中存在流层间的质点交换。当质点从某流层进入相邻的另一流层时,产生能量交换,其动量
22、发生变化,引起雷诺切应力。因而在湍流中,除因流体黏性产生的阻力外,还有因质点混杂而产生的阻力,通常后者占主导地位,但探求这种阻力规律十分困难。 1925 年,德国力学家普朗特(Prandtl)提出了著名的混合长度理论(动量输运理论) ,使湍流理论研究取得了重要进展。他首先做了两条假设: (1) 类似于分子的平均自由行程,湍流流体微团有一个“混合长度” 。如图 5-9 所示,对于某一给l定的 y 点, 和 的流体微团各以时间间)()(y 隔到达 y 点,在此之前,保持原来的时均速度dt和 不变;一旦达到 y 点,就与该处原流体微团发生碰撞而产生动量交()ul()l换。(2)横向和纵向的流速涨落(
23、脉动)量为同阶量。即有一定的比例关系(5.4-9)yxuk式中 k常数根据如上假设, 处的流体微团以 到达 y 处混合安定下来时,)(l()l与 的差异使 y 处流体微团产生 x 向的脉动速度 为)(lyu xu图 5-9 混合长度示意图118(5.4-10)()(x duuylly式中 为假设的长度参数,即普朗特混合长度的物理意义。l同理 y 向的脉动速度 为y(5.4-11)yxduukly式中 k常数把式(5.4-10)和(5.4-11)代入(5.4-7),得(5.4-12)22xyduul式中 称普朗特混合长度, 。l lk1普朗特假设混合长度 与离壁面距离 y 成正比例l(5.4-1
24、3)l则式(5.4-12)可写为 (5.4-14)22duy5.4.5 圆管内湍流速度分布在黏性底层,无流体质点混杂,附加或湍流切应力 可略去;在层流条件下,速度l梯度 为常数,则剪应力 为常数,即(以后的书写中一般以 u 代替 作为时均速度)dyu( =const) (5.4-15)01duydy根据边界条件; ,可知速度分布规律为,y(5.4-0()uy11916)在研究湍流时,通常引入特征速度(摩擦或剪切速度) *u(5.4-17)0*u则式(5.4-16)可改写为(5.4-18)(*yu式(5.4-16)和式(5.4-18)含义相同,后者引入是为了研究上的方便。当湍流发展充分时, ,雷
25、诺应力占主导地位, 可不计,则有121(5.4-19)2202()()dudulky假定在整个湍流区内,剪应力只考虑雷诺应力,则上式有(5.4-20)01duy代入(5.4-17)并积分上式,则有(5.4-21)ln*cuk式中积分常数 可由边界条件 确定c),(0y(5.4-22)ckuln1*0由上式可确定常数 c 为(5.4-23)l*0k引入 并代入 ,则有*,0ua2*00,/uu(5.4-24)*ln1akac将式(5.4-24)代入式(5.4-21),则有120(5.4-25)yukaykau * ln1lln1式中 层流边界厚度。流体到圆管边壁距离。y实验证明,当 时,完全进入
26、湍流区,式(5.4-25)成立,但对过渡层和30*y层流层不成立。尼克拉德塞(Nikuradse)等人的实验证明,对湍流的三个边层,速度分布经验公式如下层流层, ,则有 (5.4-26)8*yuyu*过渡层, ,则有 (5.4-30* yu*ln50.327)湍流层, ,则有 (5.4-28)*yu yu*l.25.5 圆管湍流运动的沿程损失前面已经给出了圆管沿程水头损失的计算方程,即(5.5-1)2luhdg式中的 为沿程阻力损失系数,它是计算沿程损失的关键,对于层流来说 。 Re64但由于湍流的复杂性,目前还没有像层流那样严格地从理论上推导的 值。工程上一般由两种方法确定 值:一种是以湍流
27、的半经验半理论为基础,结合实验结果,整理成 的半经验公式;另一种是直接根据实验结果,综合成 的经验公式。一般情况上前者更有普遍意义。1215.5.1 尼古拉兹实验1933 年德国力学家和工程学家尼古拉兹(Nikuadse J.)进行了管流沿程摩擦阻力系数 和断面速度分布的实验测定。将沙粒黏贴在管道的内壁,制成六种相对粗糙度 不 d相同的管道。实验表明,沿程阻力损失系数与管道的相对粗糙度和管道的雷诺数有关。实验结果所绘成的曲线称为尼古拉兹曲线,如图 510 所示。根据 的变化特性,尼古拉兹曲线可分为五个区。I) 层流区( 线, ),所用的实验点都落在同一直线上。表明 与abRe230 相对粗糙度
28、无关,即 。由此验证了圆管层流理论公式的正确性。64II) 层流向湍流的过渡区( 线, ),所有的实验点也都在ce2304至同一直线上。表明 与相对粗糙度无关,只是 Re 的函数。这个区意义不大,不予讨论。III) “光滑区” ( 线, ),不同的实验点都落在同一直线上, 仍cdRe4与相对粗糙度无关,只是 Re 的函数。只不过相对粗糙度 很小的管道当dRe 较大时,会稍微偏离直线。该区可由布拉休斯(Blasius)公式进行计算图 510 尼古拉兹实验曲线122) (5.5-2)41Re36.05310Re(5.5-3)237.0.2.)(65IV) 湍流过渡区( 和 线间的区域) ,该区是“
29、光滑区”向“粗糙区”转变cdef的区域;不同的相对粗糙度的管道的实验点分布落在不同的曲线上,表明既与 Re 有关,也和 有关。V) “粗糙区” ( 线右侧的区域) ,不同的相对粗糙度的管道的实验点分别落ef在不同的水平直线上,表明 与 有关,而与 Re 无关。这说明流动处在d发展完全的湍流状态,由式(5.6-1)知,沿程水头损失与流速的平方成正比,故又称为阻力平方区。该区的计算公式为尼古拉兹粗糙管公式(5.5-4)2)14.lg2(d简化后的形式称为希夫林松公式(5.5-5)0.25.d5.5.2 莫迪(Moody)图 实际工业管道粗糙度情况与尼古拉兹所用的人工粗糙度不同,难以用相对粗糙度来直
30、接表征,尼古拉兹的结果就无法直接应用。1940 年美国普林斯登的莫迪(L.F.Moody)对工业用管作了大量实验,绘制出了 与 Re 及 的关系图(图 5-11)供实际计算使用,d简便而准确,并经过许多实际验算,符合实际情况。因而莫迪图应用广泛。1235.5.3 非圆管的湍流沿程损失对于非圆管中的湍流时的阻力,其计算方法是将非圆管折算成圆管计算。根据水力半径 和圆管几何直径 d 的关系 ,则有RR4(5.5-6)2228lulluhgg式中 非圆管的水力半径, , 为湿周长度, A 为过流面积。RAR阻力系数, ,Re 为非圆管雷诺数。4e316.0在工程上,通常根据谢才(Chezy)公式计算
31、水头损失。该公式是在 1796 年由法国工程师谢才根据大量的实验数据,提出的断面平均流速与水力坡度和水力半径的关系式 uCRJ将 代入上式并整理,得fhJl图 511 莫迪图124(5.5-7)224fglulhCRg在工程上,通常根据谢才公式计算水头损失。式中 称为水力坡度; 称谢才系数,可从有关手册或资料中查取。fhJl85.6 简单管路的水头计算5.6.1 管路的一些基本定义管件与附件(管接头,弯头等)组成一体称为管路。前面已经提到管内的能量损失有两种,即沿程损失和局部损失。根据两者能量损失所占的比例大小,可把管路分为长管和短管,即局部损失与沿程损失相比较而可以忽略不计时,称长管(Lon
32、g pipe) ,否则称短管(Short pipe) 。如供水和输油管路为长管,液压技术中的管路为短管。根据管路的构成方式,管路可分为简单管路(管径不变且没有分支)和复杂管路,简单管道是生产实践中最常见的一种,也是复杂管道的组成部分。本节先简单介绍简单管路的有关计算。5.6.2 简单管路的水头计算问题如图 512 所示,这是一个水塔供水系统,由一根管径不变,总长度为 L 的管路连接水塔向外供水,水塔液面和水平管道出口的高度差为 H,列截面 11 和截面 22 的伯努利方程,得(5.6-1)221wpuHhgg由于 ,简化上式1212,aup:(5.6-2)2wuhg式中 整个管路的水头损失,单
33、位 m;wh 图 512 简单管路125出口处液体的流速,单位 m/s。2u上式就是简单管路的水头计算公式。【例题 2-2】 无介质磨矿送风管道(钢管),长度 m,直径 mm,在温度30l750dC( cm /s)的情况下,送风量 m /h。求:(1)此风管中0t157.2q3的沿程阻力损失是多少;(2)使用一段时间后其绝对粗糙度为 mm,其沿程损2.失又是多少。【解】 因为 = 18.9m/sqvA36075.42= 2320 紊流Re981.8d取 0.39mm,则 26.98 Re15293.07267 根据 及 ,查莫迪图,得 。也可应用05.739.d98e017.半经验公式计算出
34、。1所以,风管中的沿程损失为= m 气柱fh 61.28.975.03.2gvdl当 mm 时, ,按 902866,查莫迪图,得 .11675Re。则此风管中的沿程损失为02.m 气柱168.9275.03.2gvdlhf【例 5-3】 直径 mm,长度 m 的新铸铁管,输送重度为 8.82kN/m0l 的石油,已测得流量 882kN/h。如果冬季时,油的运动黏性系数 1.092cm /s,q 12夏季时,油的运动黏性系数 0.355 cm /s。问:冬季和夏季输油管中沿程水头损失 h22是多少?f【解】 1.计算雷诺数m /s m/s820.7836q3 20.78.54qvA126232
35、0 紊流483.22.计算沿程水头损失 h f冬季为层流,则= m 油柱f 37.289.05Re6421gvdl夏季时为紊流,由表 41 查得,新铸铁管的 mm,则=0.00125,.结合 ,查莫迪图得 ,则986Re20387.m 油柱32.892.52gvdlhf5.7 管流局部损失在工业管道中,由于设有进出口、弯头、三通、水表、过滤器以及各种阀等部件或装置。流体在流经过这些器件时,或流速变化,或流向变化,或兼而有之,从而干扰了流体的正常运动,产生撞击,分离脱流,漩涡等现象,带来附加阻力,增加了能量损失,这种在管道局部范围内产生的损失就是局部损失。本章第一节中已经提到了计算局部损失的公式
36、(5.7-1)2juhg式中 局部阻力系数。公式的含义就是将局部水头损失折合成管中平均速度水头的若干倍,这个倍数就是局部阻力系数。大量的实验表明,由于这类流体的运动比较复杂,影响因素较多,除少数几种可作一定的理论分析之外,一般都依靠实验方法求得实用局部阻力系数。下面分布介绍几种常见的局部阻力损失系数的计算方法。1275.7.1 管道进口处损失在管道的进口处,由于存在的流动很复杂,难以用理论知识来计算局部损失的系数。所以通过大量的科学实验,前人总结了很多情况下进口处的局部水头损失,下面就简介几种。如图 513 所示,根据实验可得各个情况下的局部损失系数为(a) 管口未作圆整时, 0.5(b) 管
37、口稍作圆整时, 0.2:(c) 管口作圆整(喇叭口) ,.5.15.7.2 突然扩大损失突然扩大管如图 514 所示,图中、 分别为截面 11 和截面 22 到 00 水平面的垂直距离,且管道与重力方向成1z2角,对截面 11 至截面 22 列出伯努利方程,得21 jpupuzzhgg式中 、 截面 11 处压强和流速1、 截面 22 处压强和流速2pu即 (5.7-2)2112jpuhzzgg根据动量定理:“流体动量的变化等于外力给予它的冲量” 。截面 11 至截面 22之间的流体动量变化量 为dM图 514 突然扩大管图 513 管道进口类型128(5.7-3)21()dMqu冲量有三部分
38、,其一为静压力变化量 ;其二为环状管断面对流2ApK体的作用力 ,最后是液体重力的分力)(1212ApPdK。按动量定理 ,则有3cosGgz21dKd3(5.7-4)21121212()()()qugAz根据连续方程 ,则有Au(5.7-5)122112()()puzg将上式代入式(5.8-2)得(5.7-6)22211()()juuhg上式称为包达(Borda)公式,表明突然扩大的局部水头损失,等于以平均流速差计算的流速水头。由 ,得12Au2211jAuhg或 221j则突然扩大的局部水头损失系数为(5.7 -7a)211A或 (5.7 -7b)221上面两个局部损失系数分别与突然扩大前
39、和突然扩大后两个断面的平均流速对应。注意当 时, 。12A:11295.7.3 渐扩管线性渐扩管如图 5-15 所示,线性扩散角为 ,这时局部损失比较复杂,与 的比值和 角相21/A关。对于渐扩管,局部阻力系数 可表示为(5.7 -8)1()(12sin22Ak式中 沿程阻力系数。和扩张角 有关的系数。k上式过于复杂,也可按突扩流动理论引入修正系数 表示为k(5.7-9)2211221()jAuksghk式中 修正系数, ,其中直径 以 mmk 3132108.0)(5.0. ddk 1d计。当 , , 时,局部损2576dm:.69.ums:21.459.2A:失的经验公式也可表示为(5.7
40、-10)1.92().08juhg5.7.4 出口处损失如图 517 所示,当液体从管道流出时,可以看成突然扩大且 ,有120A图 515 渐扩管图 517 收缩管图 516 出口130,1.0则 。表示液体流出出口后动能全部消失。2juhg5.7.5 收缩管道处的局部损失收缩管道可分为突然缩小和逐渐缩小两种情况。(1)如图 517 所示为突然缩小管,它的局部水头损失主要发生在细管收缩截面 c附近的旋涡区。突然缩小的局部水头损失系数决定于收缩面积比 ,由实验数据列表21A51 得表 5-1 管径突缩时局部损失阻力系数 21A0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.
41、8 0.9 10.50 0.47 0.45 0.38 0.34 0.30 0.25 0.20 0.15 0.09 0(2)图 518 所示是逐渐缩小的情况,这种管道不会出现流线脱离壁面的问题,其局部水头损失系数由收缩面积比 和收缩角 决定。局部水头损失系数由图 51921A查得。1315.7.6 弯管处的水头损失在圆滑弯管(图 5-20(a))和折角管(图 5-20(b))中,由于管径不变,故流速大小不变。但由于流动方向的变化而造成能量损失。dduud图 5-20(a) 圆滑弯管 图 5-20(b)折角弯管圆滑弯管的局部损失为(5.7-13)22 23.50 0(.130.6()99juduh
42、kgRg式中 弯管过渡角, 时, 。0 3.5.1.()kd弯管直径。弯管中线曲率半径。R折角弯管局部损失公式为(5.7-14)2 224(0.946sin().07sin()ju uhg g5.7.7 附件处流动损失由于管道中存在着很多部件和装置,这些部件都会引起流体的局部损失。下面列出几种常见的附件。(1) 三通接头三通接头在各种管道中很常见,特别是直三通应用最为广泛,表 52 列出了其局部阻力系数值。图 518 渐缩管 图 519 逐渐缩小的阻力系数表 52 直三通接头的局部阻力系数132(2) 闸板阀与截止阀阀门在管路中是必不可少的装置(如图 521) ,这里列举了两种常见的阀门局部阻
43、力系数。表 5-3 阀局部阻力系数(3) 液压附件在各种管道中有很多液压附件,液压附件也存在局部水头损失,下表列举了几种常见的液压附件的局部阻力系数。图 521 阀门表 54 液压附件的局部阻力系数1335.8 复杂管路计算在 5.7 节中,已经定义了管路的两种分法并对其中的简单管路进行了简要分析,以下将对复杂管路的计算问题进行讨论。根据管路的构成方式,复杂管路又可以分成串联管道和并联管道。本章简介有关计算。5.8.1 串联管道由直径不同的管段连接起来的管道,称为串联管道。串联管路中传输的流量不变,即 ;由于管径不同和每段管路长短不同,管路的总损失为沿程损12nqq失和局部损失之和。(5.8-1gudlhh jiijli 22)式中 每一段管路长度。il第 短管路的阻力系数(查表) 。ii第 短管路的流速, 。iu/iiuqA