收藏 分享(赏)

2015-2016学年人教B版选修4-4 1.3 曲线的极坐标方程 课件(29张).ppt

上传人:weiwoduzun 文档编号:4235356 上传时间:2018-12-17 格式:PPT 页数:29 大小:700.50KB
下载 相关 举报
2015-2016学年人教B版选修4-4 1.3 曲线的极坐标方程 课件(29张).ppt_第1页
第1页 / 共29页
2015-2016学年人教B版选修4-4 1.3 曲线的极坐标方程 课件(29张).ppt_第2页
第2页 / 共29页
2015-2016学年人教B版选修4-4 1.3 曲线的极坐标方程 课件(29张).ppt_第3页
第3页 / 共29页
2015-2016学年人教B版选修4-4 1.3 曲线的极坐标方程 课件(29张).ppt_第4页
第4页 / 共29页
2015-2016学年人教B版选修4-4 1.3 曲线的极坐标方程 课件(29张).ppt_第5页
第5页 / 共29页
点击查看更多>>
资源描述

1、圆的极坐标方程,曲线的极坐标方程,x,C(a,0),O,A,在平面内取一个定点O,叫做极点。,引一条射线OX,叫做极轴。,再选定一个长度单位和角度单位及它的正方向(通常取逆时针方向)。,这样就建立了一个极坐标系.,O,1.极坐标系,极坐标与直角坐标互化公式,复习回顾:,极坐标系内一点的极坐标的规定,对于平面上任意一点M,用 表示线段OM的长度,用 表示从OX到OM 的角度, 叫做点M的极径, 叫做点M的极角,有序数对(,)就叫做M的极坐标。,特别强调:表示线段OM的长度,即点M到极点O的距离;表示从OX到OM的角度,即以OX(极轴)为始边,OM 为终边的角。,一般地,不作特殊说明时,我们认为0

2、,可取任意实数.,极坐标与直角坐标的互化关系式:,设点M的直角坐标是 (x, y),极坐标是 (,),x=cos, y=sin,1.直角坐标化极坐标:,2.极坐标化直角坐标:,2.在平面直角坐标系中,平面曲线C可以用方程表示,曲线与方程f(x,y)=0满足如下关系:,(1)曲线C上点的坐标都是方程f(x,y)=0的解;,(2)以方程f(x,y)=0的解为坐标的点都在曲线C上.,复习回顾:,探究:,如图,半径为r的圆的圆心坐标为(r,0)(r0),你能用一个等式表示圆上任意一点的极坐标(,)满足的条件吗?,x,C(r,0),O,A,探究:,如图,半径为a的圆的圆心坐标为(r,0)(r0),你能用

3、一个等式表示圆上任意一点的极坐标(,)满足的条件吗?,x,C(r,0),O,A,曲线的极坐标方程,定义:如果曲线上的点与方程f(,)=0有如下关系 ()曲线上任一点的坐标(所有坐标中至少有一个)符合方程f(,)=0 ; ()方程f(,)=0的所有解为坐标的点都在曲线上。则曲线的方程是f(,)=0 .,一般地,当曲线的几何特征是用距离及角度表示时,选择曲线的极坐标方程表示曲线往往更方便,得到的方程也更简单。,曲线的极坐标方程,探究:,如图,半径为r的圆的圆心坐标为(r,0)(r0),你能用一个等式表示圆上任意一点的极坐标(,)满足的条件吗?,x,C(r,0),O,A,1、根据题意画出草图;,2、

4、设点M(,)曲线上任意一点;,3、连接MO;,4、根据几何条件建立关于,的方程,并化简;,5、检验并确认所得的方程即为所求。,1、根据题意画出草图;,2、设点M(,)曲线上任意一点;,3、连接MO;,4、根据几何条件建立关于,的方程,并化简;,5、检验并确认所得的方程即为所求。,求曲线极坐标方程的基本步骤:,例1、已知圆O的半径为r,建立怎样的坐标系,可以使圆的极坐标方程更简单?,解:如果以圆心O为极点,从O出发的一条射线为极轴建立坐标系,,那么圆上各点的几何特 征就是它们的极径都等于半径r.,注意:,变式:求圆心在C(r, ), 半径为r的圆的极坐标方程.,解:,如图所示,由题意可知,所求圆

5、的圆心在垂直于极轴且位于极轴上方的射线上,而圆周经过极点。,设圆与垂直于极轴的射线的另一交点为A,则A点的极坐标为(r, /2)。,设圆上任意一点为P(,),连结PA,则,OP,POx,在RtPOA中,,所以 2rsin为所求圆的 极坐标方程.,x,O,A,练习:,O,M,求圆心在M(0,),半径为r的圆的极坐标方程.,思考:,例2.在满足直角坐标与极坐标互化的条件下. (1)把直角坐标方程x2+y22x=0化为极坐标方程; (2)把极坐标方程=4sin 化为直角坐标方程.,练习:,练习:,练习:,2.以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是 ( ),C,(4,0),例3:在圆心的极坐标为C(4,0),半径为4的圆中,求过极点O的弦的中点的轨迹.,x,O,C(4,0),已知曲线C1与C2的极坐标方程分别cos=3,=4cos(0, 0 ),则曲丝C1与C2的交点的极坐标为 .,cos=3=4cos=2=,联立方程组,(0,0 ),解得,即两曲线的交点为(2 , ).,(2 , ),练习:,小结:()曲线的极坐标方程概念; ()怎样求曲线的极坐标方程; (3)圆的极坐标方程.,P15-2(3)(4),作业:,练习4,曲线 关于极轴对 称的曲线是( ),C,思考:,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报