1、第三章 3.2 3.2.3一、选择题1函数 y x的反函数为 ( C )(23)Ay x By x(32) log 32Cy x Dy xlog 23 log 13解析 函数 ylog ax(a0,a1)与函数 ya x(a0,a1)互为反函数,函数 y x的反函数是 y x,故选 C(23) log 232若 f(10x)x,则 f(5) ( B )Alog 510 Blg5C10 5 D5 10解析 解法一:令 u10 x,则 xlgu, f(u)lg u,f(5)lg5.解法二:令 10x 5,xlg5,f(5)lg5.3若函数 y 的图象关于直线 yx 对称,则 a 的值为 ( B )
2、ax1 xA1 B1C1 D任意实数解析 因为函数图象本身关于直线 yx 对称,故可知原函数与反函数是同一函数,所以先求反函数,再与原函数作比较即可得出答案;或利用反函数的性 质求解,依 题意,知点(1, )与( ,1)均在原函数图象上,故可得 a1.a2 a24已知函数 yf( x)与 ye x互为反函数,函数 yg( x)的图象与 yf (x)的图象关于 x 轴对称,若 g(a) 1,则实数 a 的值为 ( C )Ae B 1eC De1e解析 函数 yf(x )与 ye x互为反函数,f(x)lnx,又 函数 yg(x)的图象与 yf(x)的图象关于 x 轴对称, g(x)lnx,g(a
3、)lna1,lna1,a .1e5函数 y10 x21 (0 )1 lgx110By (x )1 lgx110Cy ( 0),则 f(1)g(1)_2_. 导 学 号 65164979解析 令 g(x)1,则 2lgx0,x1.f(x)与 g(x)互为反函数,f(1)1,g(1) 12lg11,f(1)g(1)2.三、解答题9已知 y xa 与 y3bx 互为反函数,求 a、b 的值.12 导 学 号 65164980解析 由 y xa,得 x2 y2a,12y2x2a.即函数 y xa 的反函数为 y2x2a,12由已知得函数 y2x 2a 与函数y3bx 为同一函数,Error!,Error!.10已知函数 f(x)log a(2x)(a1). 导 学 号 65164981(1)求函数 f(x)的定义域、值域;(2)求函数 f(x)的反函数 f1 (x);(3)判断 f1 (x)的单调性解析 (1)要使函数 f(x)有意义,需满足 2x 0,即 x1,x1x2,ax1ax2即 ax1 ax20,f1 (x2)f1 (x1),yf 1 (x)在 R 上是减函数