1、1初中数学青年教师教学基本功比赛试题基础知识测试题(南京下关)一、填空题(共 6 小题,每空 0.5 分,计 10 分)1数学是研究_的科学,这一观点是由_首先提出的2通过义务教育阶段的学习,学生能获得适应社会生活和进一步发展所必须的数学的_、_、_、_3维果斯基的“最近发展区理论”认为学生的发展有两种水平:一种是学生的_发展水平; 另一种是学生_发展水平,两者之间的差异就是最近发展区4从数学史上看,有理数的概念传入我国存在着翻译上的错误,其原意是_数,包括_小数和_小数,_的发现,引发了第一次数学危机5_是概率论发展史上首先被人们研究的概率模型,它具有两个特征:一是_、二是_6波利亚在其名著
2、怎样解题中提出的解数学题的四个步骤是:_、_、_、_;他认为“怎样解题表”有两个特点,即普遍性和_性二、简答题(共 3 小题,每小题 5 分,计 15 分)7大约在公元前 6 世纪至 4 世纪之间,古希腊人遇到了令他们百思不得其解的三大尺规作图问题,这就是著名的古代几何学作图三大难题请你简述这三大难题分别是什么?8 义务教育数学课程标准 (2011 年版)从知识与技能等四个方面对总目标进行了阐述(1)请写出其他三个方面目标的名称;(2)请简述总目标的这四个方面之间的关系9 “角平分线上的一点到角的两边距离相等”这一结论在苏教版义务教育数学教材八上的1.4 线段、角的轴对称性以及九上的1.2 直
3、角三角形全等的判定中都有所出现请你结合教学实际,简述课本上八上和九上分别是如何引导学生得到这一结论的,说说它们之间的区别、联系和这样安排的意义参考答案:1数量关系和空间形式2基础知识、基本技能、基本思想、基本活动经验3现有,可能的4成比例的数,有限,无限循环,无理数5古典概型, (试验结果的)有限性, (每个结果的)等可能性6弄清问题、拟定计划、实施计划、回顾反思;常识7三等分角问题:将任一个给定的角三等分立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等8 (1)数学思考、问题解决、情感态度;2(2)四个方面
4、是一个有机的整体;教学要兼顾这四个目标,这些目标的实现,是学生受到良好数学教育的标志;后三个目标的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现9八上1.4 线段、角的轴对称性中是通过学生动手操作,采取折纸的方法折出角的平分线,再过角平分线上一点折出角的两边垂线段,然后度量这两条线段的长度得出结论的;九上1.2 直角三角形全等的判定是通过严格的推理论证,采用自己画图、写已知、求证并证明得出结论的它们的区别是,一个是通过动手操作,一个是通过严格证明联系是,前面的学习为后面的学习作铺垫,在进行严格的证明之前,学生已经熟练地掌握了这一结论的运用意义是,符合学生的认知发展规律,使
5、学生的认知从感性上升到理性,既培养了学生的动手能力,又培养了学生的推理论证能力符带说明:1专业技能比赛包括基础知识测试和解题能力测试两部分基础知识测试内容包括数学文化(数学史)常识和数学教育基础知识(教材、课程标准、教育学、心理学、教学论、教学法等) 解题能力测试内容包括基础题(教材中的基本定理、公式的证明,教材例题、习题、复习题)与综合题(与中考中档题难度相当) 2第 1、2、8 题考查对课标学习和理解情况(称为课标板块) ;第4、5、7 题结合苏教版初中数学教科书的教学内容对数学史进行简单的考查(称为数学史板块) ;第 3、6、9 题是对心理学、数学教育学、教材和教学法等相关知识的考查(称
6、为综合板块) 2012年雨花台区小学数学青年教师教学基本功比赛3教育教学知识常识比赛试卷(满分 100分,时间 60分钟)姓名 成绩 一、填空题:本大题共 8 个小题,共 22 个空,每空 1 分,共 22 分。把答案填在题中横线上。1. 马斯洛把需要由低级到高级分为五个等级:生理需要、安全需要、归属和爱的需要、 、 。2. 师生关系大致可以划分为专制型、 和 三种模式。3. 安德森根据知识的状态和表现方式把知识分为两类,即陈述性知识和知识。4. 最早建立在心理学和伦理学基础上的教育专著是教育家 撰写的 。5奥苏贝尔根据知识是否具有内在联系和逻辑性把学习划分为 与 ;根据学生学习形式把学习划分
7、为 与 。6小学数学教学班级授课的基本组织形式有 、 、 。7全日制义务教育数学课程标准(2011 年版)中的课程总目标包括四个方面: 、 、 、 。8全日制义务教育数学课程标准(2011 年版)中“图形与几何”的内容标准有: 、 、 、 四个部分。二、选择题:本大题共 15 小题,每小题 2 分,共 30 分。在每小题给出的四个选项中,只有一项是符合题目要求的。把所选项前面的字母填在括号里。1. 教学以培养全面发展的人为( )。A.根本目的 B.主要任务来源 C.基本任务 D.辅助目的2. 孔子“不愤不启,不悱不发”的思想在教学中体现的是( )原则。A.启发性原则 B.因材施教原则 C.直观
8、性原则 D.循序渐进原则3. 个体本位论的代表人物是( )。A.夸美纽斯 B.迪尔凯姆 C.卢梭 D.凯兴斯坦纳4. “忧者见之则忧,喜者见之则喜”这是受一个人( )的影响。A.激情 B.心境 C.热情 D.应激5. 小学生由具体形象思维向抽象逻辑思维过渡依靠的中介环节是( )。A.观察 B.操作 C.表象 D.想象6. 下列学习律不是桑代克提出的有( )。A.准备律 B.练习律 C.效果律 D.强化律7. 通过分析、综合、抽象、概括,逐步掌握概念的基本特征或规律的实际含义,达到理性认识的这一个小学数学学习的重要阶段是( )。A.感知 B.综合 C.理解 D.掌握8. 有利于教师及时获得反馈信
9、息的教学方法是( )。A.讲解法 B.谈话法 C.演示法 D.操作实验法49. 学生的主体地位总结起来主要体现在学生在教学过程中,主动参与的( )。A.深度与广度 B.程度与水平 C.积极性 D.兴趣10.当主体需要了解某种数学关系或空间形式,而其中一些要素是未知的时候,就产生了( )。A.数学障碍 B.数学联想 C.数学问题 D.数学学习11.学生是数学学习的主体,教师是数学学习的组织者、引导者与( )。A.参与者 B.传授者 C.主宰者 D.合作者12.数学课程标准(2011 年版)认为,学习数学的重要方式除了动手实践、自主探索、合作交流以外,还有积极思考和( )等。A.反复练习 B.认真
10、听讲 C.积极发言 D.大胆提问13.数学课程标准(2011 年版)提出的“四基”是指( )。A.基础知识、基本能力、基本方法、基本经验B.基础知识、基本技能、基本态度、基本活动经验C.基础知识、基本技能、基本思想、基本活动经验D.基本知识、基本策略、基本思想、基本经验14. 义务教育阶段的数学课程是培养公民素质的基础课程,具有( )。A.普及性、阶段性和适宜性 B.基础性、普及性和发展性C.基础性、强制性和发展性 D.普及性、阶段性和发展性15.教师职业良心的内涵主要包括以下四个方面是( )。A.恪尽职守、自觉工作、爱护学生、团结执教 B.恪尽职守、无私奉献、言传身教、爱护学生 C.恪尽职守
11、、无私奉献、爱护学生、团结执教 D.恪尽职守、自觉工作、言传身教、爱护学生三、简答题:本大题共 3 个小题,每小题 10 分,共 30 分。1简述建构主义的知识观与学生观。2. 简述教师专业发展的必要性。3. 与 2001 年版义务教育数学课程标准相比,2011 年版义务教育数学课程标准在课程基本理念和课程总目标上有哪些变化?5四、论述题:本题 1 个小题,18 分。1. 试析小组合作学习的优势及应注意的问题。64厘米2010年雨花台区小学教师教学基本功比赛数学解题能力考查题学校 姓名 成绩 一、填空题(每空 4分,共 48分)1张老师家的电话号码是一个八位数,从右到左分别是:最小的素数;最小
12、的奇数;15 和 10的最大公因数;最大的一位数;既不是质数,也不是合数的自然数;一位数中最大的偶数;3 和 9的最小公倍数;最小的合数。张老师家的电话号码是 2如果六位数03825 能被 39整除,方框里的数字应该是 3从一副扑克牌中随意抽一张牌,抽到红桃的可能性是 ;如果去掉大王和小王,抽到“2”的可能性是 。4下面是一幢教学楼的班级分布图:(1)数对(1,2)表示的班级是 ;数对( 4,3)表示的班级是 。(2)表示某班位置的数对是(x,1),可能是 。 (填班级)(3)如果表示三(3)班的位置是(x1,y1),那么数对(x,y)表示的班级是 。5小军要在规定的时间里把演出服装从学校骑车
13、送到少年宫,如果以每小时15千米的速度行驶,则早到 1小时;如果以每小时 10千米的速度行驶,则晚到 1小时。若想准时送到,小军平均每小时应行驶 千米。6右图是一个等腰直角三角形,直角边长 4厘米,图中阴影部分面积是 平方厘米。第 6题图 第 7题图7上面的形体由小正方体拼搭而成。每个小正方体的棱长都是 1厘米,7D CA BG HE F这个形体的体积是 立方厘米,表面积是 平方厘米。二、计算题(每题 5 分,共 20 分)0.690.061.70.622060 11112222 33334 2010个 1 2010个 2 2009个 3 7( )15 17 115 2208091三、解答题(
14、每题 8分,共 16分)1、如图是一座立交桥俯视图。中心部分路面宽 20米, AB=CD=100米。阴影部分为四个四分之一圆形草坪。现有甲、乙两车分别在 A, D两处按箭头方向行驶。甲车速 56千米/小时,乙车速 50千米/小时。甲车要追上乙车至少需要多少分钟?(圆周率取 3.1)2、甲、乙、丙、丁四人参加一次数学竞赛。赛后,他们四个人预测名次的谈话如下:甲:“丙第一名,我第三名。 ” 乙:“我第一名,丁第四名。 ”丙:“丁第二名,我第三名。 ” 丁没说话。最后公布结果时,发现他们预测都只对了一半。请你写出这次竞赛的甲、乙、丙、丁四人的名次。答:甲第( )名,乙第( )名,丙第( )名,丁第(
15、 )名。四、操作题。 (每题 8分,共 16分)1、一只小虫从顶点 A出发,沿正方体的表面爬到顶点 H,沿什么样的路线走距离最近?(在图中画出来)A2020 甲乙DBCA82、下图是一个立体图形的侧面展开图,请根据这个展开图在右边空白处画出这个立体图形。小学数学教师教学基本功比赛试卷(07、4 、 25)姓 名 成 绩 一、填空:1、按规律填数。(1)1、3 、5、7、 ( ) 、 ( ) 、13、15 (2)1、4、9、16、25、 ( ) 、 ( )(3)1、1 、2、3、5 、8、 ( ) 、 ( ) (4) 5= =301 069=0(5)1,1,2,2,3,3, ( ) , ( )第
16、 2007 个数是( ) 。2、用 2、3 、4、5 这四个数字组成两个两位数,要使这两个两位数相乘的积最大,积最大是:( ) ( )( ) ( )( ) ;要使这两个两位数相乘的积最小,积最小是( ) ( )( ) ( )( ) 。3、在下面各式数字的适当位置填上运算符号或括号,使等式成立。4 4 4 4 4 1 4 4 4 4 4 2 4 4 4 4 4 34 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 884、所有两位数中,十位数字和个位数相等的有( )个;十位数字比个位数字大的有( )个。5、锯一根钢筋,锯成 3 段用了 12 分钟,照这样计算,锯成 6 段要( )
17、分钟。6、今天是 2007 年 4 月 25 日,星期三,那么今年的 9 月 1 日是星期( ) ,2008 年的 4 月 25 日是星期( )7、有 5 箱苹果,每堆苹果的重量相等,从每堆苹果中都取出 18 千克后,余下的苹果相当于原来 3 堆苹果的重量,原来每堆苹果有( )千克。98、 = =121829、A 、B 、C 三个人一共买了 8 个同样的面包平均分着吃, A 付了 5 个面包的钱,B 付了 3 个面包的钱,C 忘了带钱。事后 C 共付出了 4 元钱,A 应收回( )元。10、小红的爷爷爱好书法,他有这样一个习惯,今天是几号就练几个毛笔字,如果爷爷连续 5 天练了 90 个毛笔字
18、,那么他是( )号到( )号,或是( )号到( )号。11、下图中小黑点表示网络的结点,结点之间的连线表示它们有网线相连。连线标注该段网线单位时间内可以通过的最大的信息量。现在从结点 A 向结点 B 传递信息,那么单位时间内传递的最大信息量是( ) 。二、操作题1、如图 7 枚棋子可以摆成 3 行,每行 3 枚。如果给你 7 枚棋子,每行也只摆 3枚,还可以摆成几行?请你把不同的摆法(不同的行数看作不同的摆法)画图表示出来。2、把一个橡皮泥做的正方体,用刀子将它快速切成两部分,截面可能是几边形?(画图表示)3、把一张长方形纸对折,再对折-分别数一数平均分成的份数,填在表里(n或=1 )对折次数
19、 1 2 3 10 n平均分的份数2 4 三、计算3625(两种方法) 24698100 9999199200720062006200620072007 21481632418三、解决问题1、将 125 个苹果分成若干份,使任意两份的苹果都不相等,最多可以分成多少份?共有多少种不同的分法?102、计算下图中阴影部分的面积。 (单位厘米) (先计算,再探索,你发现了什么?把你的发现写下来)3、在三角形 ABC 中,三个内角的和是 180 度。小敏发现有一个角恰好是另一个角的 2 倍,小军发现其中一个角是另一个角的 3 倍,求这个三角形的三内角的度数。4、一条绳子,甲剪了全长的一半少 1 米,乙剪
20、了余下的一半多 1 米,丙剪了还剩下的一半多 3 米,最后还剩下 4.5米,这条绳子长多少米?5、由 18 个大小相同的圆组成右图所示的图形,在这些图形中,取相连的两个圆为一组,那么共有多少种不同的取法?11初中数学青年教师基本功比赛理论部分(一)填空题1数学课堂教学的三维目标是知识与技能 、过程与方法 、 情感与价值观 。2法国哲学家、物理学家、数学家、生理学家 勒奈 笛卡尔 被称为解析几何学的创始人。3今天,世界各国的科学家们都在试探寻找“外星人” ,科学家们一次又一次地向宇宙发射了地球上人类的形象、问候语言、自然音响、世界名曲等信号,尝试与“他们”通话、建立友谊。数学家曾建议用 勾股定理
21、 作为人类探寻“外星人”并与“外星人”联系的语言。4 1900 年前后,在数学的集合论中出现了三个著名悖论,其中最重要的悖论 罗素悖论 ,这些悖论触发了第三次数学危机。5课程标准的一个重要支撑理论是建构主义,其代表人物有:皮亚杰、卡茨、维果斯基。(填两个)6.数学是人们对客观世界定性把握和 定量刻画 、逐渐 抽象概括 、形成方法和理论,并进行广泛应用的过程。7. 教师的主要任务是激发学生的学习积极性 ,向学生提供充分从事数学活动的机会,帮助学生成为学习的 主人 。8、初中阶段的数学内容分为数与代数、空间与图形、统计与概率和 课题学习 四个领域。129、动手操作、 自主探究 、 合作交流 是学生
22、学习数学的重要方式。10、不同的人在数学上得到不同的发展的意思是:教学要面向全体,必须适应每一位学生的 发展需要 ;人的发展不可能整齐划一,必须 承认差异 ,尊重差异。11义务教育阶段的数学课程标准应体现基础性、普及性 _、_发展性_, 使数学教育面向全体学生,实现:人人学有价值的数学;_人人获得必需的数学_;_ 不同的人在数学上获得不同的发展_ 。12新课程理念下教师的角色发生了变化,已有原来的主导者转变成了学生学习活动的_组织者_,学生探究发现的_引导者_,与学生共同学习的_合作者_。13例举三个以上适合课外学生数学活动的形式_数学手抄报、数学专题报告、数学小调查、数学演讲_ _14.古希
23、腊的三大几何问题是 三等分角、立方倍角、化圆为方 ;15.数学史上三大数学危机是 无理数的发现、无穷小是零、悖论的产生 ;16.我国著名数学家陈景润证明了数论中的命题“1+2” ,这个命题的具体名称是 任何一个大于 2 的偶数都可以表示成两个质数的和 ;17.把实数表示在数轴上体现了 数形结合 数学思想;(二)简答题18大约在公元前 6 世纪至 4 世纪之间,古希腊人遇到了令他们百思不得其解的三大尺规作图问题,这就是著名的古代几何作图三大难题。请你简述这三大难题分别是什么?答:(1)将任一个给定的角三等分。(2)立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍。(3
24、)化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等。19请你说出几种数学思想方法(至少三种) ,并就其中一种思想方法举实例说明。答:化归思想、从特殊到一般思想、建模思想、算法多样化、数形结合思想、方程思想、极端化思想20.简述创设问题情境的目的是什么?答:(1)激发学生的数学学习兴趣和学习动机;(2)培养学生将问题情境数学化的能力; (3)养成学生关注情境问题的数学本质和数学特性,用数学的眼光、数学的视角关注问题、审视世界的思维习惯;(4)增强学生数学应用意识,感受数学与生活的联系。21.爱因斯坦曾说:“大多数教师的提问是浪费时间,那些提问是想了解学生不知道什么,其实真正的提问艺术是
25、要了解学生知道什么或能够知道什么” 。结合你的教学观,谈谈你对爱因斯坦这段话的理解。13答:(维果斯基的) “最近发展区理论”认为,学生的发展有两种水平:一种是学生的现有水平,另一种是学生可能的发展水平,两者之间的差距就是最近发展区。所谓“知道什么”就是学生的“现有水平” , “能够知道什么”就是“学生可能的发展水平” , 从而着眼于学生的最近发展区,根据学生认知水平,为学生提供带有难度的内容,调动学生的积极性,发挥其潜能,在教师的引导、同伴的帮助和自己的努力下,超越最近发展区而达到其困难发展到的水平。21.“角平分线上的一点到角的两边距离相等”这一结论在苏科版义务教育数学教材八上的1.4 线
26、段、角的轴对称性以及九上的1.2 直角三角形全等的判定中都有所出现。请你结合教学实际,简述课本上八上和九上分别是如何引导学生得到这一结论的,说说它们之间的区别、联系和这样安排的意义。答:八上从图形变换角度出发,利用轴对称性,通过图形变换,想象、类比、归纳得出结论,重点发展学生几何直观能力、合情推理能力;九上是从证明的角度出发,通过演绎推理得出结论,有相对严密的逻辑体系,重点发展学生的演绎推理能力、逻辑思维能力。两者的区别是:出发点答:八上从图形变换角度出发,利用轴对称性,通过图形变换,想象、类比、归纳得出结论,重点发展学生几何直观能力、合情推理能力;九上是从证明的角度出发,通过演绎推理得出结论
27、,有相对严密的逻辑体系,重点发展学生的演绎推理能力、逻辑思维能力。论的方法不同、对学生能力要求不同。联系是:几何直观、合情推理是逻辑思维、演绎推理的前提和基础,而后者是前者的深化与发展。这种安排充分考虑到学生的年龄与心理特征,遵循学生的认知规律,为学生搭建思维脚手架,促进学生思维能力螺旋上升22证明勾股定理,并说明你证明时使用的数学思想和方法。23 “函数 ”是贯穿整个中学数学阶段的最重要内容,也是学生学习感到困难的内容。(1 )请简要说出函数概念的发展历史;(2) 用新课程的观点谈如何使学生理解函数概念。24从三维目标的角度论述“零指数幂和负整数指数幂” 的教学目标。25苏科版九年级数学下册
28、有这样一道例题:室内通风和采光主要取决于门窗的个数和每个门窗的透光面积,如果计划用一段长 12m 的铝合金型材,制作一个上部是半圆,下部是矩形的窗框,那么当矩形的长宽分、别是多少时,才能使该窗户的透光面积最大?请你在此题的基础上,对该题改编和编题,并给出解答和评分标准(假设满分为 12 分)原题见二次函数 (苏科版九下)例题14沿江工业开发区小学数学教师专业理论考试试题 2010-4-14姓名: 单位: 成绩:一、第一部分:填空题。(数学课程标准基础知识)。(125=25) 1、数学是人们对客观世界( )和( ) 、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。2、义务教育阶段的数学课程
29、应突出体现( )性、 ( )性和( )性,使数学教育面向全体学生。3、义务教育阶段的数学课程应实现人人学( )的数学;人人都能获得( )的数学;不同的人在数学上得到( )的发展。 4、学生的数学学习内容应当是 ( ) 、 ( ) 、 ( ) 。 5、有效的数学学习活动不能单纯地依赖模仿与记忆, ( ) 、 ( ) 、 ( )是学生学习数学的重要方式。 6、数学教学活动必须建立在学生的( ) 和( )的15基础上。 7、在各个学段中, 数学课程标准标准安排了( ) ( ) ( ) ( )四个学习领域。8、 数学课程标准标准明确了义务教育阶段数学课程的总目标,并从( ) 、 ( ) 、 ( ) 、
30、 ( )等四个方面做出了进一步的阐述。9、评价的主要目的是为了全面了解学生的数学学习历程,激励学生的的学习和改进( ) 。二、第二部分:选择题。 (教育学、心理学理论) 。(115=15) 1、关于学生在教育的过程中所处的地位,下列说法正确的是( ) ,A、主体 B、客体 C、既是主体也是客体 D、既不是主体也不是客体2、 现代教育派的代表人物是美国教育家( )。A、夸美纽斯 B、赫尔巴特 C、杜威 D、裴斯塔罗齐3、 “教学相长” “循序渐进”等教育原理出自下列哪部作品。 ( )A、 论语 B、 学记 C、 演说术原理 D、 大学4、能使学生在很短的时间内获得大量系统的科学知识的方法是( )
31、 。A、谈话法 B、读书指导法 C、练习法 D、讲授法5、教学的任务之一是发展学生智力、培养能力,教会学生( )。A、学习 B、操作 C、读书 D、实习6、以系统的科学知识、技能武装学生,发展学生智力的教育是( )。A、德育 B、智育 C、体育 D、美育7、学生学业成绩的检查与评定的意义有( ) 。A、诊断作用 B、强化作用 C、调节作用 D、以上都是8、“人之初,性本善”这样的性善论属于( )儿童发展观。A、遗传决定论 B、环境决定论 C、辐合论 D、儿童中心主义9、德 国 心 理 学 家 艾 宾 浩 斯 研 究 发 现 , 遗 忘 在 学 习 之 后 立 即 开 始 , 特 点 是 ( )
32、A、先快后慢 B、先慢后快 C、匀速遗忘 D、视内容而定10、 小学儿童思维发展的特点是( )。16A、 直觉动作思维 B、具体形象思维 C、抽象逻辑思维 D、具体形象思维向抽象逻辑思维过渡11、 人是教育的对象一书作者被称为“俄罗斯教育心理学的奠基人”。这本著作被认为“奠定了俄国教育科学的科学研究基础”。作者是( )。A、乌申斯基 B、赞可夫 C、维果斯基 D、卡普杰列夫12、5、儿童课堂上的分心现象属于( )抑制。A、外抑制 B、保护抑制 C、消退抑制 D、分化13、17、一位同学智力年龄为 12,实际年龄为 10,这位同学属于( )A、智力超常儿童 B、 正常儿童 C、弱智儿童 D、品德
33、良好儿童14、反复玩弄手指,摇头,走路时喜欢反复数栏杆、触摸路旁的灯柱、踩路沿走等。属于的心理问题是( )。A、儿童多动综合征 B、学习困难综合征 C、儿童厌学症 D、儿童强迫行为15、在如何划分年龄阶段的问题上,以生理发展作为划分标准的代表人物是( )。A、施太伦 B、埃里克森 C、 佛洛依德 D、厄尔康宁三、第三部分:解题能力。(计 50)(1)计算题,要有主要过程。(26=12 分)40424446178180 9999111133336667 199519961996199619951995 (87 )3127931279( 1):3.75X=1:( 1) 43438511472071
34、7(2)作图题:(23=6)下图是解放军野战模拟训练地图,每条线段代表小路。每个小正方形边长为 1 厘米。比例尺为 1:100000。A战士小王要从 A 点以每分钟 200 米急行军速度向东出发,半个小时后接到命令要他立刻向北,走了 25 分钟后又接到命令,要他立刻往东走 5 分钟后,要他立刻在原地向北偏东 45 度开辟一条直线路直到和其他路相连在 B 点。、请标出小王走的线路图 (用明显的粗线画出即可) ;、标出现在小王的位置 B。 (用明显的粗点标出即可) 。C、算出 AB的直线距离。(3) 、推理题 2。以上“基” “本” “功” “竞” “赛” “好”分别代表的数字是( ) ( ) (
35、 ) ( ) ( ) ( ) 。(四)解决问题。 (以下题目均不能用二元一次方程解答)(56=30 )(1) 、沿长、宽相差 25米的游泳池跑 4圈作下水前的准备活动。已知共跑了600米这个游泳池的占地面积是多少平方米? 基 本赛好赛功 竞基 本 功 竞好 赛18(2) 、小张买 4个书包和 6个文具盒共花 372元,如果买 7个书包和 3个文具盒共 561元,请问 5个书包和 8个文具盒共多少元?(限用算术方法解)(3) 、 某次数学竞赛共 20道题,评分标准是:每做对一题得 5分,每做错或不做一题扣 1分。小华参加了这次竞赛,得了 64分。问:小华做对几道题?(限用算术方法解)(4) 、一项工程,甲独做 12天完成,乙独做 15天完成。现在按甲、乙、甲、乙的顺序轮流工作,甲每次做 2天,乙每次做 1天,问完成任务要多少天?(5) 、如图:梯形 ABDC中,AB/CD,AB=3,CD=5, 梯形 ABDC面积为 4。a、求 SCOD;b、如果沿 AB为轴,梯形 ABDC旋转一周,求旋转后所形成图形的体积。OACBD