1、土与结构相互作用,是研究土与结构动力系统相互作用的数学模型、力学机理、耦合效应、界面特性和计算分析方法等,解决多种介质的动力耦合问题,为结构工程、岩土工程、地下工程、防护工程等众多领域的动力分析和工程的动力可靠性设计提供理论基础和分析方法。研究对象:地震波场中与地基或围岩相连的高层建筑、大型桥梁、地下结构、大型水坝等在给定输入波场,研究结构及其附近土体的动力反应。动力相互作用问题:由振源出发的振动波,通过场地土层传播输入结构体系使其振动;同时结构体系产生的惯性力如同新的振源反过来作用于场地,引起新的地振动再作用于结构体系。,不考虑相互作用,考虑相互作用,横切面剪切变形,轴向弯曲变形,剪切破坏,
2、土与结构相互作用的分析系统,结构,土体,土体材料力学特性,土体材料本构关系,弹性本构关系,非弹性本构关系,界面接触,土体与结构接触问题,结构材料力学特性,结构材料本构关系,弹性本构关系,非弹性本构关系,接触力学特性,接触本构关系,土与结构相互作用系统分析涉及三大问题,地震动特性及地震动输入本构关系(本构模型)算法,地震动及地震动输入,地震动三要素: 地震动持续时间(s) 地震动强度特性 地震动频谱特性,东西向加速度时程(幅值2.101m/s2),南北向加速度傅氏谱,南北向加速度时程(幅值3.417m/s2),东西向加速度傅氏谱,地震动输入是土与结构相互作用研究的首要前提。包括:(1)抗震设防水
3、准:根据功能目标确定。(2)地震动输入方式: 地震动基准面确定 地基边界面上的输入地震动参数(3) 输入量值大小目前获得的地震动记录大都为地表记录,基岩面记录较少。强震记录较少。,汶川地震记录,汶川卧龙EW向记录:反应谱、时域峰值谱、小波变换特征谱、幅值谱的对比,地震动输入方式:,地震动水平输入垂直向输入,目前规范规定垂直输入为水平输入的2/3。,土层地震反应分析,地震动输入方式的比较,设计地震动峰值加速度确定,中国地震动参数区划图确定。工程场地地震危险性分析中超越概率所提供的峰值加速度。,地震波纵波(P波) :速度最大最先达到。 振动方向与传播方向一致。 引起地面上下颠簸振动 。横波(S波)
4、: 振动方向与传播方向垂直。 引起地面的水平晃动。 是地震时造成建筑物破坏的主要原因。 面波:乐甫波,雷利波: S波达到地表时,它包括SH和SV波动,前者在水平平面 上振动,后者在垂直平面上振动。 是由纵波与横波在地表相遇后激发产生的混合波。,由震源深处传播的地震波到达地表时其入射方向逐渐接近于垂直水平地表的 竖向。地震加速度通常情况下取沿地表的两个水平分量和垂直于地表的竖向分量。地震仪 :分别接受地震时地面的水平振动和垂直振动 。,地震波选取,根据场地条件,通过调整实测地震波的幅值和时间尺度修正其频谱。地震加速度振幅的缩放:不改变频谱特性和持续时间。地震波卓越周期调整: 用实测地震波作为输入
5、。基于规范设计反应谱合成人工地震波。场地地震危险性分析,给出不同超越概率下的峰值加速度作为基底输入的加速度。,规范中四类场地标准加速度反应谱曲线(烈度8度,设计地震动为1组),同一场地不同阻尼比反应谱曲线(烈度8度,二类场地),人工地震波的合成,本构模型,土与结构相互作用系统动力灾变全过程分析。在特定环境条件下结构工作性态分析。非线性、非弹性数值分析的发展,1.线性粘弹性模型岩土介质在动力作用下通常表现出明显的阻尼,阻尼作用使土体中的动能消散而损耗。具有线性粘性阻尼土介质的应力应变关系为:,为 土的弹性模量, 为土的粘性系数, 弹性恢复力, 阻尼力 分别为土的应变和应变速率。,上式的应力应变关
6、系可以表示为:,一、土的本构模型,上式的解为:,假如土体受到周期应力作用,且初始应变为零,即,得到:,上式第三项很快衰减为零,得到稳态的应变解为:,改写为:,应力应变轨迹方程,引入坐标变换变成为应力应变轨迹椭圆标准方程:,利用应力应变轨迹可求得一个周期内粘性元件消耗的能量为:,粘性阻尼主要产生两种效应:一是使应变反应滞后于应力一个相角差 ; 二是荷载一周往返作用消耗的能量为 。,线性粘弹性岩土介质在一次往返形成的应力应变轨迹称为滞回曲线,滞回曲线所围成的面积是粘性阻尼消耗的能量。,2.非线弹性模型,岩土介质的线性模型一般只适用于低应力、土体不发生屈服的情况。当应力较高时,土体将发生屈服,应力应
7、变关系是非线性的。土体发生屈服后,卸载路径不同于加载路径,卸载后存在不可恢复的塑性变形。非线性弹性模型模拟土体屈服后的非线性变形,但忽略应力路径的影响,即加载和卸载沿同一条路径。Duncan-Chang模型超弹性模型,循环加载,每一次循环加载都有可恢复的弹性变形和不可恢复的塑性变形(永久变形),单调加载曲线是循环加载所对应的骨干曲线。,Duncan-Chang模型,单调加载,3.弹塑性模型双曲线模型双曲线作为土的应力应变弹塑性模型的主干线(骨干曲线)它是对称于原点的一条双曲线,其方程表示为:,参考剪应变,,剪应力最大值。,初始割线剪切模量,ABC段:卸载反向加载,CDA段:反向加载,这一模型包
8、括两个参数,由试验确定。,4.等价非线性粘弹性模型,试验研究表明:循环加载过程的应力幅值和应变幅值之间的关系可用双曲线表示。,定义等价剪切模量为,得到,为试验参数,为大气压力,等价阻尼比确定,定义等价阻尼比 为,通过试验确定,等价阻尼比随应变幅值变化,曲线,曲线,二、混凝土材料本构模型,线弹性模型非线弹性模型塑性理论模型其它力学理论类模型:粘性弹(塑)性理论、内时理论、断裂力学、损伤力学理论等。,1、线弹性本构模型线弹性模型是弹性力学的物理基础。只需要给出弹性模量E和泊松比的数值。,2、塑性理论本构模型直接将塑性理论应用于混凝土材料的是弹性理想塑性本构模型,以一维的应力应变关系表示。混凝土发生
9、破坏后应力立即降为零,不能分析混凝土在应力峰值后的强度下降(软化)过程。单轴应力应变关系。,建立塑性理论本构模型的流程图,3、非线弹性本构模型随着应力增加,变形按一定规律非线性增长,刚度逐渐减小;卸载时,应变沿原曲线返回,无残余应变。模型表达式简明,直观,便于理解和应用。不能反映卸载和加载的区别,不能应用于卸载、加载循环和非比例加载。,三、接触面本构模型及接触面单元,土与结构材料的界面上常有较大的剪应力,这是两种材料变形不一致引起的。正确地分析接触面上的受力变形机理,剪切破坏的发展,荷载传递过程,并在计算中正确地模拟,是十分重要的。接触面变形的研究,主要包含两个方面:一是接触面上的本构关系,尤
10、其是剪应力和剪切变形之间的关系;一是接触面单元,它是有限元计算中用以模拟接触面变形的一种特殊单元。两方面的研究是互相联系的,接触面单元是为了表达接触面上的变形,接触面变形的表示又要适应所选用的接触面单元。破坏变形有两种形式:一是张裂,一是滑移。,直剪试验,混凝土墙面较光滑,滑动面沿着墙面,如图(a)墙面粗糙,滑动面发生在靠近墙的土体之中,如图3(b)所示滑动破坏不是沿一个面,而是许多面,形成剪切破坏带。这些破坏面可能与接触面存在一定的交角,但在宏观上,破坏区是沿着接触面的,如图3(c)所示。,土体与结构界面连接条件(耦合条件)对动力系统的计算结果影响较大,必须合理处理界面问题,给出合理的接触面
11、连接条件。,双曲线模型。Clough,1971 Desai本构模型,1992 殷宗泽,1994 Jesus E G模型,2003,接触面单元 Goodman单元 Desai薄层单元等,接触单元分析(Goodman单元,节理单元,无厚度单元),两个接触面之间的弹簧承受正应力和剪应力的作用,并且接触面之间产生相对法向位移和相对滑动(切向)位移,即,,,关键是如何准确确定弹簧刚度系数,Desai薄层单元,无限域和人工边界问题对于静力荷载作用下土与结构相互作用进行分析时,可在离结构较远处截取土体边界,把问题直接转化为对结构和有限土体组成的体系进行分析。对于土与结构动力相互作用问题,由于虚拟边界会把由结
12、构辐射出来的波反射回已被截取的有限土体中,使波无法透过虚拟边界而辐射至无穷远处。因此,不能简单地截取有限土体进行分析。在截取的边界上设置人工边界:人工透射边界、人工阻尼边界等。使截取的有限土体与外界无限土体间能进行能量交换。,近域地基底边界取刚性边界输入设计地震动 输入加速度时程。全部截取边界取为人工边界,在底边界输入地震动 输入应力波时程。均匀地震动输入。 考虑行波效应地震动输入。,粘性边界的基本思想就是利用边界力模拟无限域的影响,边界力定义为,式中,分别为边界法向和切向质点运动速度;,分别为沿粘性边界作用的法向应力和切向应力。,粘弹性边界,粘性边界,粘性边界和粘弹性人工边界的比较,人工边界
13、,粘性边界:,粘弹性边界:,土与结构相互作用研究的发展,20世纪30年代,机械基础振动问题。20世纪70年代,防护工程、地震工程领域。特别是核电工程发展,高耸、超大型结构抗震、抗暴性能研究。一、自由场响应及结构对波的散射研究在波动(如地震波)荷载作用下,自由场地表附近土体的运动不同于下卧基岩的运动;另一方面,结构对波的散射又会影响自由场的响应。即自由场动力响应问题。不能简单地把基岩的运动作为结构基础底面的运动。地震动输入问题为了确定作用于结构上的动荷载,需要求解自由场的动力响应,并考虑结构对波的散射影响。动力相互作用系统研究,不能简单地把基岩的运动 作为结构基础底面的运动,自由场响应分析,自由
14、场响应分析方法,把自由场简化为固定于基岩上的粘弹性土柱的水平剪切运动分析解析法,对于非水平地表或地表建造有土坝、路堤等土工结构的不规则自由场,采用集中质量法,相邻质点以剪切弹簧-阻尼器连接。,复杂场地(非线性、非均质)数值分析方法,结构对波的散射,结构对波的散射研究包括土体中结构、裂缝、孔洞等形成的不连续面对波传播产生的影响。不讨论结构的动力响应。对SH波,P波的散射,地面刚性基础对斜入射波的散射等。,地震、打桩、地下工程施工等产生的振动往往以弹性波的形式在天然土层中传播。当遇到障碍物时会发生反射。饱和土体中可传播的三种体波:快压缩波P1,慢压缩波P2,剪切波S(SH,SV)。,倾斜入射SV波
15、的散射波位移场,位移幅值很大,且分布不呈对称性,河谷两侧的差别很大。,二、土体中结构动力响应研究,这类问题包括在波动场和局部动力源(振源)作用下土体中结构的变形和运动的研究。,需要考虑周围土体对结构的影响当土体为无限域时,需要引入人工边界截取结构周围的有限土体。,为动力可靠性设计提供依据系统的动力性能包括结构对波的散射和吸收,结构的位移和应力响应,结构和隔振材料的动力特性及其减振效果等。,三、土与结构系统的动力性能研究,试验研究: 室内试验研究 振动台试验 离心机试验 现场试验和地震观测振动台试验研究可以进行多维地震输入问题。离心机试验只能进行一维振动模拟。,土与结构相互作用系统的研究方法,台
16、面尺寸:3.36m x 4.86m 振动方向:水平单向 最大载重量:25t 水平最大位移:120mm 水平最大速度:500mm/s 水平最大加速度:1.0 g 工作频率:0.150Hz 最大倾覆力矩:45t.m,分析研究 解析法 数值方法: 有限元法 边界元法 离散元法 有限差分法 无限元法 各种耦合方法试验研究与分析研究相结合的方法,按求解区划分: 直接法整体法 子结构法按求解方法划分: 解析法 半解析法 数值法 等效法按荷载输入方式划分: 波场输入法 惯性荷载法,直接法: 分别给出土体和结构的动力方程,再由界面条件耦合求解土体和结构这两组动力学方程。 可以求解非线性、非均质和不连续的相互作
17、用问题,并可以利用接触单元等方法模拟土与结构的界面特性。 动力自由度数量很多,计算量巨大。,子结构法: 把土体和结构分别作为动力子结构来处理。 分两步进行分析: 第一步:分析土体动力子结构,确定与结构连接的自由度的力位移关系,由此给出土的动力刚度系数矩阵,每个动力刚度系数代表一个广义的弹簧阻尼器,由弹簧阻尼器与结构连接,代替土与结构的相互作用。 第二步:分析由此弹簧阻尼器体系支承的结构的振动。 子结构法可以把复杂土结构相互作用体系分解较容易处理的几部分。 子结构法隐含了叠加原理,只适应于线性问题分析。,自由场体系作单位面积土柱,刚性地基假定与考虑相互作用比较,非线性问题:土体介质非弹性引起的材
18、料非线性问题通过选取合适的地基模型实现。基础(结构)与其周围土体之间产生滑移、脱离、再闭合而造成的状态非线性问题。,阻尼问题:,不同的材料分别采用各自的阻尼,在有限元计算中采用材料分区的办法处理。即在模型中定义多种形式的阻尼:结构部分、土体部分等。,土与结构动力相互作用的基本理论,土和结构的动力学方程是土与结构相互作用理论的基础。动力学方程的建立借助于土和结构物理本构模型,动力相互作用问题的分析借助于动力学分析方法。,饱和土体中的波动问题是固-流耦合的动力问题。Biot(1956)首先建立了多孔介质的动力学方程,奠定了饱和土体动力学分析的基本理论。该理论的基本假定为:(1)骨架是连续多孔介质,
19、土颗粒不可压缩;(2)孔隙水不可压缩,在土中流动符合Darcy定律;(3)孔隙尺寸远小于波长;(4)不计温度的影响。土骨架运动方程流体(孔隙水)运动方程渗流连续方程土的应力应变关系,1. 岩土介质的动力学基本方程,2.结构动力学基本方程,集中质量法结构的动力学方程,土与结构相互作用系统的动力学分析方法,动力学分析的解析方法解析方法一般适用于结构形状比较简单、土的分布区域比较规则的线性问题。,动力学分析的半解析方法半解析方法又称为半解析数值方法,是一种解析分析与数值计算相结合的分析计算方法,是指在分析的过程中部分采用解析解或解析函数的数值方法。,动力学分析的有限单元方法可用于各种复杂结构、大变形
20、、物理非线性等问题的动静力分析计算。,动力分析的有限单元法,1.有限元分析的基本内容有限元法通常是以单元的结点位移作为基本未知量,即按位移法进行分析,主要分析内容包括系统离散、单元分析和总体分析3个部分。,(1)系统的离散将实际系统中的岩土介质和结构由平面单元或空间单元进行离散,由有限个仅在结点处连接的单元组合体系来代替实际系统,并使各单元按变形协调条件相互联系,这样的有限元组合系统称为有限元离散模型。,(2)单元分析,(3)整体分析,2.有限元动力方程的数值积分方法通常采用逐步数值积分方法求解。逐步数值积分方法求得的解只在离散的时间间隔处 满足动力方程。而在时间间隔 内的变化规律是给定的。,
21、设初始时刻t=0的各结点的位移、速度、加速度分量为 是已知的,从时刻t=0,t=T求解动力方程,把T分成为n个时间间隔 , 是求解的时间步长。逐步数值积分法从前一时刻的解计算下一时刻的解,逐步建立时刻的 近似解。,因此,若已知t=0时刻的解,就可逐步求解以后各时刻的解。,Wilson - 法,修正的线性加速度逐步积分法。,(线加速度逐步积分法假定时刻t到时刻t+ 的时间间隔内,加速度按线性关系变化),Wilson - 法假定时刻t到时刻t+ 的时间间隔内,加速度按线性关系变化,其中 取大于1.0的数值。通常取 =1.4。,用,表示时间增量,,在时刻t到t+,的时间间隔内,假定,时刻的加速度为,
22、对上式作一次和二次积分,得到,时刻的速度和位移,令,,得,Newmark方法,Newmark方法也是一种线性加速度方法的推广。该方法假定位移和速度为,式中参数,和,由积分精度和稳定性要求确定。,3.数值积分方法的稳定性和计算精度,数值计算的精度是指数值解与精确解之间误差的大小。稳定性是指数值积分中误差不会持续增大和放大,使数值解能迅速收敛于一个稳定的值。稳定性不能保证精度。,4.非线性动力问题的增量分析法,对于非线性动力系统,应力应变关系是非线性的,离散系统动力方程的刚度矩阵和阻尼矩阵随变形变化。,分别为增量阻尼矩阵和增量刚度矩阵。,5.岩土介质-结构的耦合分析,在岩土体与结构动力系统中,土体与结构之间的接触界面(接触面)将引起波的反射和折射,产生能量交换现象。土体与结构界面连接条件(耦合条件)对动力系统的计算结果影响较大,必须合理处理界面问题,给出合理的接触面连接条件。,和,