1、11.3.1角平分线的性质(1),不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?,再打开纸片 ,看看折痕与这个角有何关系?,(对折),情境问题,1、如图,是一个角平分仪,其中AB=AD,BC=DC。,情境问题,A,D,B,C,E,如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?,2、证明:在ACD和ACB中AD=AB(已知)DC=BC(已知) CA=CA(公共边) ACD ACB(SSS)CAD=CAB(全等三角形的 对应边相等)AC平分DAB(角平分线的定义),根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器),O,探究新知,N,O,M,C
2、,E,探究角平分线的性质,(1)实验:将AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?,(2)猜想:角的平分线上的点到角的两边的距离相等.,证明:OC平分 AOB (已知) 1= 2(角平分线的定义) PD OA,PE OB(已知) PDO= PEO(垂直的定义)在PDO和PEO中PDO= PEO(已证)1= 2 (已证)OP=OP (公共边) PDO PEO(AAS)PD=PE(全等三角形的对应边相等),已知:如图,OC平分AOB,点P在OC上,PDOA于点D,PEOB于点E 求证: PD=PE,探究角平分线的性质,(3)验证
3、猜想,角平分线上的点到角两边的距离相等。,(4)得到角平分线的性质:,利用此性质怎样书写推理过程?,思考: 要在区建一个集贸市场,使它到公路,铁路距离相等且离公路,铁路的交叉处米,应建在何处?(比例尺 1:20 000),公路,铁路,如图:在ABC中,C=90 AD是BAC的平分线,DEAB于E,F在AC上,BD=DF; 求证:CF=EB,实践应用(2),分析:要证CF=EB,首先我们想到的是要证它们所在的两个三角形全等,即RtCDF RtEDB.,现已有一个条件BD=DF(斜边相等),还需要我们找什么条件,DC=DE (因为角的平分线的性质) 再用HL证明.,试试自己写证明。你一定行!,回味
4、无穷,定理 角平分线上的点到这个角的两边距离相等. OC是AOB的平分线, P是OC上任意一点PDOA,PEOB,垂足分别是D,E(已知) PD=PE(角平分线上的点到这个角的两边距离相等). 用尺规作角的平分线.,13.3角的平分线的性质(2),1、会用尺规作角的平分线.,角的平分线上的点到角的两边的距离相等,2、角的平分线的性质:,PDOA,PEOB, OC是AOB的平分线, PDPE,用数学语言表述:,复习,反过来,到一个角的两边的距离相等的点是否一定在这个角的平分线上呢?,已知:如图,QDOA,QEOB, 点D、E为垂足,QDQE 求证:点Q在AOB的平分线上,思考,证明: QDOA,
5、QEOB(已知), QDOQEO90(垂直的定义) 在RtQDO和RtQEO中QOQO(公共边) QD=QE RtQDORtQEO(HL) QODQOE点Q在AOB的平分线上,已知:如图,QDOA,QEOB, 点D、E为垂足,QDQE 求证:点Q在AOB的平分线上,到角的两边的距离相等的点在角的平分线上。, QDOA,QEOB,QDQE 点Q在AOB的平分线上,用数学语言表示为:,角的平分线上的点到角的两边的距离相等., QDOA,QEOB,点Q在AOB的平分线上 QDQE,如图, ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB、BC、CA的距离相等,BM是ABC的角平分线,点P
6、在BM上,PD=PE (角平分线上的点到这个角的两边距离相等).,同理,PE=PF.,PDPE=PF.,即点P到三边AB、BC、CA的距离相等,证明:过点P作PDAB于D,PEBC于E,PFAC于F,如图,已知ABC的外角CBD和BCE的平分线相交于点F, 求证:点F在DAE的平分线上,证明:,过点F作FGAE于G,FHAD于H,FMBC于M,G,H,M,点F在BCE的平分线上, FGAE, FMBC,FGFM,又点F在CBD的平分线上, FHAD, FMBC,FMFH,FGFH,点F在DAE的平分线上,如图,在ABC中,D是BC的中点,DEAB,DFAC,垂足分别是E,F,且BECF。 求证
7、:AD是ABC的角平分线。,利用结论,解决问题,练一练 1、如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村.要使这个度假村到三条公路的距离相等,应在何处修建?,想一想,在确定度假村的位置时,一定要画出三个角的平分线吗?你是怎样思考的?你是如何证明的?,拓展与延伸,2、直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有:( ) A.一处 B. 两处 C.三处 D.四处,分析:由于没有限制在何处选址,故要求的地址共有四处。,到角的两边的距离相等的点在角的平分线上。, QDOA,QEOB,QDQE 点Q在AOB的平分线上,用数学语言表示为:,角的平分线上的点到角的两边的距离相等., QDOA,QEOB,点Q在AOB的平分线上 QDQE,课堂小结,拓展与延伸,3、已知:BDAM于点D,CEAN于点E,BD,CE交点F,CF=BF,求证:点F在A的平分线上.,