1、- 1 -广东省江门市第二中学 2018-2019 学年高一数学 10 月月考试题注意事项: 1、全卷共三大题,22 小题。满分共 150 分,测试时间 120 分钟。2、答题前,务必将自己的班级、姓名、考号填写在答题卡规定的位置上。3、答选择题时,必须使用 2B 铅笔将答题卡上对应题目的答案标号涂黑,如果改动,用橡皮擦擦干净后,再选择其它答案标号。4、答非选择题时,用圆珠笔或黑色签字笔将答案书写在答题卡规定的位置上。5、所有题目必须在规定的答题卡上作答,在试卷上作答无效。一、选择题:本大题共 12 小题,每小题 5 分,满分 60 分,在每小题给出的四个选项中,只有一项 是符合题目要求的。1
2、.设集合 , ,则 ( )1,2A,34BABA. B. C. D.1,231,2342.设集合 , ,则 ( )|x|xA B C D(4,3)(4,2(,(,)3.设全集 U 是实数集 R,M | -2 或 2,N |1 3,则图中阴影部分表xxx示 的集合是 ( ) A |2 1 B |2 2xC |1 2 D | 2x4. 的值是( )41)86(A B C D-23 32 481 8145.下列哪组中的两个函数是同一函数( )A. 与 B. 与 3()yxy2()yxyC. 与 D. 与2()6.已知函数 ,则 的值是( )21()xf(0)1(fA2 B2 C 4 D5- 2 -7
3、. 的奇偶性是 ( )221)(xxfA.奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数 8.下列函数中,在区间(0,2)上为增函数的是 ( )A. 13xy B. C. 342xy D. xy4xy9.如右图是偶函数 )(f的局部图像,根据图象所给信息,下列结论正确的是( )A 06)2(ff B. 0)6(2ffC. D. (10.函数 的定义域为( )01()2fxxA. B. C. D. 2,),),2),21(),11.定义在 R 上的偶函数 )(xf满足 ,且在 上单调递增,设 )3(fa, )(xff0, 2c,则 cba,大小关系是 ( ).1(fbA. a B. C.
4、 cb D. b12.设 )(xf为奇函数,且在 ),0(上是增函数, 0)215(f,则 0)(xf的解集为( )A ),215()0,( B. ),()0,(C. D. 215二、填空题:本大题共 4 小题,每小题 5 分,满分 20 分。13.给出下列集合 A 到集合 B 的几种对应,其中,是从 A 到 B 的映射的有 62 xoy- 3 -14.某班共 30 人,其中 15 人喜爱篮球运动,10 人喜爱兵乓球运动,8 人对这两项运动都不喜爱,则喜爱篮球运 动但不喜爱乒乓球运动的人数为_ _.15.已知函数 ()fx为 R上的奇函数,当 0x时,1f.若 ()2fa,则实数 a .16.
5、函数 在(,1上是增函数,则mxx2)(的取值范围是 三、解答题:本大题共 6 小题,满分 70 分解答须写出文字说明、 证明过程和演算步骤17 (本小题满分 10 分)已知方程 02qpx的两个不相等实根为 21,x集合 ,21xA, B2,4,5,6,C1,2,3,4, AC A, AB ,求 qp的值18 (本小题满分 12 分)已知集合 71|xA, 102|xB , 2|axC,全集为实数集R(1)求 AB,( RA)B;(2)如果 C, 求 的取值范围a19. (本小题满分 12 分) 利用单调性定义证明函数 1)(2xf 在区间 ),0(上是单调增函数20 (本小题满分 12 分
6、)如右图,直 角梯形 OABC 位于直线 x t(0 t5)右侧的图形的面积为 f(t),试求函数 f(t)的解析式21 (本小题满分 12 分)若函数 )2,0(12)(xaxf 的最小值为 2,求实数 a的值- 4 -22 (本小题满分 12 分)已知函数 )0(12)(abxaxg在区间 3,2上有最小值 1 和最大值 4,设f(1)求 b,的值;(2)若不等式 04)(kxf在 ),1恒成立,求实数 k的取值范围.- 5 -第一学期 10 月月考高一数学评分标准一、选择题答题处:(本题共 12 小题,每小题 5 分,共 60 分)题号 1 2 3 4 5 6 7 8 9 10 11 1
7、2 答案 D B C B A D C B A D C A二、填空题答 题处:(共 4 题,每题 5 分,共 20 分)13、(1) (2) 14、1215、-1 16、 2m三、解答题:本大题共 6 小题,满分 70 分解答须写出文字说明、证明过程和演算步骤17 (本小题满分 10 分)已知方程 02qpx的两个不相等实根为 21,x集合 ,21xA,B2,4,5,6, C1,2,3,4, AC A, AB ,求 qp的值解:由 AC A 可知 , 1 分,由 AB 可知 2 A,4 A3 分, 5 分,,1即 1 和 3 是方程 02qpx的两个不相等实根6 分, 8 分,解得 10 分.0
8、9q34p18 (本小题满分 12 分)已知集合 71|xA, 102|xB , 2|axC,全集为实数集 R(1)求 AB,( RA)B;(2)如果 C, 求 的取值范围a- 6 -。 。12792,61074,2)1( aaCAxBxR19 (本小题满分 12 分)利用单调性定义证明函数 1)(2xf 在区间 ),0(上是单调增函数 。 。 121,0)(. ,)(,)1( ,0)1(0,08)1()()(1)()(4)( ,1,0,21 2122 2121222122121212121 xf xffxxxxfxf20 (本 小题满分 12 分)如右图,直角梯形 OABC 位于直线 x t
9、(0 t5)右侧的图形的面积为 f(t),试求函数 f(t)的解析式- 7 -21 (本小题满分 12 分)若函数 )2,0(12)(xaxf 的最小值为 2,求实数 a的值。 。 。 。 。12.1 1.02,)()(0203 8.235,3)()( 2,2 6.1,21)0()( ,01 4,2)()( 22 5- 51- - -mininmin a aafxfaff afxf xaxf22 (本小题满分 12 分)已知函数 )0(12)(abxaxg在区间 3,2上有最小值 1 和最大值 4,设f(1)求 b,的值;(2)若不等式 04)(kxf在 ),1恒成立,求实数 k的取值范围.5 分10 分12 分- 8 -。 。 。 。12.8.6)( 1,(,08)31)( 9.,6)08.1420)(7,.216.143)()( 50, 3,1)1(2)(122 2 kxhxxxkxkxfgabafx xbabaxxg-minmain