收藏 分享(赏)

六年级奥数复习一(直接思路1).ppt

上传人:无敌 文档编号:384267 上传时间:2018-04-04 格式:PPT 页数:18 大小:908.50KB
下载 相关 举报
六年级奥数复习一(直接思路1).ppt_第1页
第1页 / 共18页
六年级奥数复习一(直接思路1).ppt_第2页
第2页 / 共18页
六年级奥数复习一(直接思路1).ppt_第3页
第3页 / 共18页
六年级奥数复习一(直接思路1).ppt_第4页
第4页 / 共18页
六年级奥数复习一(直接思路1).ppt_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、常用解题思路,(一)直接思路,【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。,例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?,提示:已知狗以每分钟300米的速度,在哥哥与弟弟之间来

2、回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么? 狗跑的时间与哥哥追上弟弟所用的时间是相同的。可以求出这时狗总共跑了多少距离?,【逆向分析思路】从题目的问题入手,根据数量关系,找出解这个问题所需要的两个条件,然后把其中的一个(或两个)未知的条件作为要解决的问题,再找出解这一个(或两个)问题所需的条件;这样逐步逆推,直到所找的条件在题里都是已知的为止,这就是逆向分析思路,运用这种思路解题的方法叫分析法。,例1 、两只船分别从上游的A地和下游的B地同时相向而行,水的流速为每分钟30米,两船在静水中的速度都是每分钟600米,有一天,两船又分别从A、B两地同时相向而行,但这次水流速

3、度为平时的2倍,所以两船相遇的地点比平时相遇点相差60米,求A、B两地间的距离。,分析(用分析思路考虑):(1)要求A、B两地间的距离,根据题意需要什么条件?需要知道两船的速度和与两船相遇的时间。(2)要求两船的速度和,必要什么条件? 两船分别的速度各是多少。题中已告之在静水中两船都是每分钟600米,那么不论其水速是否改变,其速度和均为(600+600)米,这是因为顺水船速为:船速+水速,逆水船速为:船速-水速,故顺水船速与逆水船速的和为:船速+水速+船速-水速=2个船速(实为船在静水中的速度),(3)要求相遇的时间,根据题意要什么条件?两次相遇的时间因为距离相同,速度和相同,所以应该是相等的

4、,这就是说,尽管水流的速度第二次比第一次每分钟增加了30米,仍不会改变相遇时间,只是改变了相遇地点:偏离原相遇点60米,由此可知两船相遇的时间为6030=2(小时)。此分析思路可以用下图(图2.3)表示:,例2 、五环图由内径为4,外径为5的五个圆环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等(如图2.4),已知五个圆环盖住的总面积是122.5,求每个小曲边四边形的面积(圆周率取3.14),【一步倒推思路】顺向综合思路和逆向分析思路是互相联系,不可分割的。在解题时,两种思路常常协同运用,一般根据问题先逆推第一步,再根据应用题的条件顺推,使双方在中间接通,我们把这种思路叫“一步倒推思

5、路”。这种思路简明实用。,例1 一只桶装满10千克水,另外有可装3千克和7千克水的两只空桶,利用这三只桶,怎样才能把10千克水分为5千克的两份?,(1)逆推第一步:把10千克水平分为5千克的两份,根据题意,关键是要找到什么条件?因为有一只可装3千克水的桶,只要在另一只桶里剩2千克水,利用32=5,就可以把水分成5千克一桶,所以关键是要先倒出一个2千克水。,例2 今有长度分别为1、2、39厘米的线段各一条,可用多少种不同的方法,从中选用若干条线段组成正方形?,分析(仍可用一步倒推思路来考虑):(1)逆推第一步。要求能用多少种不同方法,从中选用若干条线段组成正方形必须的条件是什么?根据题意,必须知

6、道两个条件。一是确定正方形边长的长度范围,二是每一种边长有几种组成方法。(2)从条件顺推。因为九条线段的长度各不相同,所以用这些线段组成的正方形至少要7条,最多用了9条,这样就可以求出正方形边长的长度范围为(1+2+7) 4 (1+2+ +9) 4 7-11(厘米)。,当边长为7厘米时,各边分别由1+6、2+5、3+4及7组成,只有一种组成方法。当边长为8厘米时,各边分别由1+7、2+6、3+5及8组成,也只有一种组成方法。当边长为9厘米时,各边分别由1+8、2+7、3+6及9;18、27、4+5及9;27、36、4+5及9;18、36、45及9;18、2+7、36及45共5种组成方法。当边长

7、为10厘米时,各边分别由1+9、28、37及46组成,也只有一种组成方法。当边长为11厘米时,各边分别由2+9、 38、47及5+6组成,也只有一种组成方法。将上述各种组成法相加,就是所求问题了。,【还原思路】从叙述事情的最后结果出发利用已知条件,一步步倒着推理,直到解决问题,这种解题思路叫还原思路。解这类问题,从最后结果往回算,原来加的用减、原来减的用加,原来乘的用除,原来除的用乘。运用还原思路解题的方法叫“还原法”。,例2 李白街上走,提壶去打酒;遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒。试问酒壶中,原有多少酒?分析(用还原思路探索):李白打酒是我国民间自古以来广为流传的一道用打油诗

8、叙述的著名算题。题意是:李白提壶上街买酒、喝酒,每次遇到酒店,便将壶中的酒量增添1倍,而每次见到香花,便饮酒作诗,喝酒1斗。这样他遇店、见花经过3次,便把所有的酒全喝光了。问:李白的酒壶中原有酒多少?,下面我们运用还原思路,从“三遇店和花,喝光壶中酒”开始推算。见花前有1斗酒。第三次:见花后壶中酒全喝光。第三次:遇店前壶中有酒半斗。 第一次:见花前壶中有酒为第二次遇店前的再加1斗。遇店前壶中有酒为第一次见花前的一半。其思路图如下,【假设思路】在自然科学领域内,一些重要的定理、法则、公式等,常常是在“首先提出假设、猜想,然后再进行检验、证实”的过程中建立起来的。数学解题中,也离不开假设思路,尤其

9、是在解比较复杂的题目时,如能用“假设”的办法去思考,往往比其他思路简捷、方便。我们把先提出假设、猜想,再进行检验、证实的解题思路,叫假设思路。,例1 、中山百货商店,委托运输队包运1000只花瓶,议定每只花瓶运费0.4元,如果损坏一只,不但不给运费,而且还要赔偿损失5.1元。结果运输队获得运费382.5元。问:损坏了花瓶多少只?,Name of your presentation,LOGO,【消去思路】对于要求两个或两个以上未知数的数学题,我们可以想办法将其中一个未知数进行转化,进而消去一个未知数,使数量关系化繁为简,这种思路叫消去思路,运用消去思路解题的方法叫消去法。二元一次方程组的解法,就

10、是沿着这条思路考虑的。,例1 、师徒两人合做一批零件,徒弟做了6小时,师傅做了8小时,一共做了312个零件,徒弟5小时的工作量等于师傅2小时的工作量,师徒每小时各做多少个零件?,分析(用消去思路考虑):这里有师、徒每小时各做多少个零件两个未知量。如果以徒弟每小时工作量为1份,把师傅的工作量用徒弟的工作量来代替,那么师傅8小时的工作量相当于这样的几份呢?很明显,师傅2小时的工作量相当于徒弟5小时的工作量,那么8小时里有几个2小时就是几个5小时工作量,这样就把师傅的工作量换成了徒弟的工作量,题目里就消去了师傅工作量这个未知数;然后再看312个零件里包含了多少个徒弟单位时间里的工作量,就是徒弟应做多

11、少个。求出了徒弟的工作量,根据题中师博工作量与徒弟工作量的倍数关系,也就能求出师傅的工作量了。,【转化思路】解题时,如果用一般方法暂时解答不出来,就可以变换一种方式去思考,或改变思考的角度,或转化为另外一种问题,这就是转化思路。运用转化思路解题就叫转化法。,各养兔多少只?,分析(用转化思路思索):题中数量关系比较复杂,两个分率的标准量不同,为了简化数量关系,,只呢?这时两人养的总只数该是多少只呢?假设后的数量关系,两人养的总只数应是:100-163=52(只),【类比思路】类比就是从一个问题想到了相似的另一个问题。例如从等差数列求和公式想到梯形面积公式,从矩形面积公式想到长方体体积公式等等;类

12、比是一个重要的思想方法,也是解题的一种重要思路。,例2 从时针指向4点开始,再经过多少分钟,时针正好与分钟重合。,分析(用类比思路讨论):本题可以与行程问题进行类比。如图2.11,如果用时针1小时所走的一格作为路程单位,那么本题可以重新叙述为:已知分针与时针相距4格,分,如果分针与时针同时同向出发,问:分针过多少分钟可追上时针?这样就与行程问题中的追及问题相似了。4为距离差,速度差为,重合的时间,就是追上的时间。,【分类思路】把一个复杂的问题,依照某种规律,分解成若干个较简单的问题,从而使问题得到解决,这就是分类思路。这种思路在解决数图形个数问题中经常用到。,例1 如图2.12,共有多少个三角

13、形?,分析(用分类思路考虑):这样的图直接去数有多少个三角形,要做到能不重复,又不遗漏,是比较困难的。怎么办?可以把图中所有三角形按大小分成几类,然后分类去数,再相加就是总数了。本题根据条件,可以分为五类(如图2.13)。,【等量代换思路】有些题的数量关系十分隐蔽,如果用一般的分析推理,难于找出数量之间的内在联系,求出要求的数量。那么我们就根据已知条件与未知条件相等的关系,使未知条件转化为已知条件,使隐蔽的数量关系明朗化,促使问题迎刃而解。这种思路叫等量代换思路。,例2 有三堆棋子,每堆棋子数一样多,并且都只有黑白两色棋子。第一,这三堆棋子集中一起,问白子占全部棋子的几分之几?,【对应思路】分

14、数、百分数应用题的特点是一个数量对应着一个分率,也就是一个数量相当于单位“1”的几分之几,这种关系叫做对应关系。找对应关系的思路,我们把它叫做对应思路。例1 有一块菜地和一块麦地,菜地的一半和麦地的三分之一放在一起是91公亩,麦地的一半和菜地的三分之一放在一起是84公亩,那么,菜地是几公亩?,【割补】在数学中,把图形的某个部分割下,补到某一个新的位置,往往可以使新的图形,更便于发现数量关系,从而较快地解答出数学题目。,例如,在图4.38中,三个圆的面积都是12.56平方厘米,且三个圆两两相交,三个交点都是圆心,求三块阴影部分的面积。,从表面上看,题目是无法解答的。但只要仔细观察就能发现,根据轴对称性及割补方法,题目可作如下的解答:,如图4.39,将图形1翻折到图形2的位置;再将图形3和4割下来,合并在一起,补到图形5的位置上。于是,原来的阴影部分就正好拼成了一个半圆。所以,三块阴影部分的面积是12.562=6.28(平方厘米),

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初级教育 > 教育管理

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报